Abstract:
Display layers and touch sensor layers may be overlapped by enclosure walls in an electronic device. The electronic device may have a front wall and opposing rear wall and curved sidewalls. The front wall and the curved sidewalls may be formed from a glass layer or other transparent member. A touch sensor layer and display layer may extend under the glass layer with curved sidewalls. A touch sensor layer may also extend under the opposing rear wall. A foldable electronic device may have a flexible transparent wall portion that joins planar transparent walls. Components may be interposed between the transparent planar walls and opaque walls. Display and touch layers may be overlapped by the transparent walls and the transparent flexible wall portion. Touch sensor structures may also be overlapped by the opaque walls.
Abstract:
Display layers and touch sensor layers may be overlapped by enclosure walls in an electronic device. The electronic device may have a front wall and opposing rear wall and curved sidewalls. The front wall and the curved sidewalls may be formed from a glass layer or other transparent member. A touch sensor layer and display layer may extend under the glass layer with curved sidewalls. A touch sensor layer may also extend under the opposing rear wall. A foldable electronic device may have a flexible transparent wall portion that joins planar transparent walls. Components may be interposed between the transparent planar walls and opaque walls. Display and touch layers may be overlapped by the transparent walls and the transparent flexible wall portion. Touch sensor structures may also be overlapped by the opaque walls.
Abstract:
Display layers and touch sensor layers may be overlapped by enclosure walls in an electronic device. The electronic device may have a front wall and opposing rear wall and curved sidewalls. The front wall and the curved sidewalls may be formed from a glass layer or other transparent member. A touch sensor layer and display layer may extend under the glass layer with curved sidewalls. A touch sensor layer may also extend under the opposing rear wall. A foldable electronic device may have a flexible transparent wall portion that joins planar transparent walls. Components may be interposed between the transparent planar walls and opaque walls. Display and touch layers may be overlapped by the transparent walls and the transparent flexible wall portion. Touch sensor structures may also be overlapped by the opaque walls.
Abstract:
Display layers and touch sensor layers may be overlapped by enclosure walls in an electronic device. The electronic device may have a front wall and opposing rear wall and curved sidewalls. The front wall and the curved sidewalls may be formed from a glass layer or other transparent member. A touch sensor layer and display layer may extend under the glass layer with curved sidewalls. A touch sensor layer may also extend under the opposing rear wall. A foldable electronic device may have a flexible transparent wall portion that joins planar transparent walls. Components may be interposed between the transparent planar walls and opaque walls. Display and touch layers may be overlapped by the transparent walls and the transparent flexible wall portion. Touch sensor structures may also be overlapped by the opaque walls.
Abstract:
Display layers and touch sensor layers may be overlapped by enclosure walls in an electronic device. The electronic device may have a front wall and opposing rear wall and curved sidewalls. The front wall and the curved sidewalls may be formed from a glass layer or other transparent member. A touch sensor layer and display layer may extend under the glass layer with curved sidewalls. A touch sensor layer may also extend under the opposing rear wall. A foldable electronic device may have a flexible transparent wall portion that joins planar transparent walls. Components may be interposed between the transparent planar walls and opaque walls. Display and touch layers may be overlapped by the transparent walls and the transparent flexible wall portion. Touch sensor structures may also be overlapped by the opaque walls.
Abstract:
Display layers and touch sensor layers may be overlapped by enclosure walls in an electronic device. The electronic device may have a front wall and opposing rear wall and curved sidewalls. The front wall and the curved sidewalls may be formed from a glass layer or other transparent member. A touch sensor layer and display layer may extend under the glass layer with curved sidewalls. A touch sensor layer may also extend under the opposing rear wall. A foldable electronic device may have a flexible transparent wall portion that joins planar transparent walls. Components may be interposed between the transparent planar walls and opaque walls. Display and touch layers may be overlapped by the transparent walls and the transparent flexible wall portion. Touch sensor structures may also be overlapped by the opaque walls.
Abstract:
Display layers and touch sensor layers may be overlapped by enclosure walls in an electronic device. The electronic device may have a front wall and opposing rear wall and curved sidewalls. The front wall and the curved sidewalls may be formed from a glass layer or other transparent member. A touch sensor layer and display layer may extend under the glass layer with curved sidewalls. A touch sensor layer may also extend under the opposing rear wall. A foldable electronic device may have a flexible transparent wall portion that joins planar transparent walls. Components may be interposed between the transparent planar walls and opaque walls. Display and touch layers may be overlapped by the transparent walls and the transparent flexible wall portion. Touch sensor structures may also be overlapped by the opaque walls.
Abstract:
Differential driving and/or sensing can reduce noise in a touch screen. In some examples, the touch electrodes and/or routing traces can be implemented using metal mesh in first and second metal layers. To mitigate electrical interference at the touch screen from a display, a display-noise shield or sensor can be provided between the display and the touch screen. In some examples, a shield can minimize a noise contribution from the display to signals generated at the touch screen. In other examples, a sensor can enable a differential read out of signals at the touch screen that subtracts a noise component measured by the sensor. Forming the shield or sensor, and the touch screen over the display using an on-cell process can improve touch screen performance and yield. The shield can be connected to a conductive ring and flex circuit via tapping points in a stackup separate from a display stackup.
Abstract:
Display layers and touch sensor layers may be overlapped by enclosure walls in an electronic device. The electronic device may have a front wall and opposing rear wall and curved sidewalls. The front wall and the curved sidewalls may be formed from a glass layer or other transparent member. A touch sensor layer and display layer may extend under the glass layer with curved sidewalls. A touch sensor layer may also extend under the opposing rear wall. A foldable electronic device may have a flexible transparent wall portion that joins planar transparent walls. Components may be interposed between the transparent planar walls and opaque walls. Display and touch layers may be overlapped by the transparent walls and the transparent flexible wall portion. Touch sensor structures may also be overlapped by the opaque walls.