Abstract:
The system and method for position, navigation, and timing and more particularly to a system that is time and/or position independent and capable of autonomous transition from GPS to non-GPS navigation. The integrated position, navigation, and timing system uses primary and secondary navigation sensors and primary and secondary navigation measurement sources with a common time reference architecture, an integrated “dual-grid” navigation module, an integrated “dual-grid” navigation Kalman filter, and an integrated “dual-grid” navigation source selection module to provide both geodetic and relative grid timing and/or location among members of a network of platforms, particularly in GPS denied or degraded environments.
Abstract:
The present disclosure provides a spread spectrum landing system with a low probability of intercept altimeter that is in communication with a plurality of asymmetrically placed antennas or transponders near a landing area. The low probability of intercept altimeter acts as a secondary system in the event that a primary landing system for the mobile platform is denied or otherwise inoperable. The low probability of intercept altimeter cycles through unique pseudo noise (PN) codes to determine a line of sight relative to each antenna or transponder. A single algorithm or process determines and ranges the platform relative to the transponders to effectuate the landing of the platform.
Abstract:
A system and method for repurposing of cryptographic capabilities in an electronic warfare (EW) environment is presented. A method begins by determining in a client system a cryptographic function to be performed; however, the client system does not have any cryptographic functionality. The client system then requests the cryptographic function be performed in a cryptographic logic that is physically secured with the client system and is external to the client system. The cryptographic logic performs the cryptographic function to produce a cryptographic result. The cryptographic result is then provided to the client system.
Abstract:
The present disclosure provides a spread spectrum landing system with a low probability of intercept altimeter that is in communication with a plurality of asymmetrically placed antennas or transponders near a landing area. The low probability of intercept altimeter acts as a secondary system in the event that a primary landing system for the mobile platform is denied or otherwise inoperable. The low probability of intercept altimeter cycles through unique pseudo noise (PN) codes to determine a line of sight relative to each antenna or transponder. A single algorithm or process determines and ranges the platform relative to the transponders to effectuate the landing of the platform.