摘要:
The invention relates to a piezoelectric motor comprising a piezoelectric component that is connected to a resonator and a two-dimensional resonator that interacts with a movable element, the resonator having principal surfaces that are parallel to each other and that are also identical in shape and size. The invention further relates to methods for producing such piezoelectric motors, wherein the resonators are manufactured by cutting a profiled, extruded bar into lengths or by cutting, preferably by punching, from sheet metal having constant thickness. Finally, this invention relates to a method for exciting such a piezoelectric motor, wherein the excitation frequency or frequencies is/are generated by the control electronics as a function of time in response to the respective peak current and/or in response to the respective phase minimum between current and voltage and/or in response to the change in phase.
摘要:
A piezoelectric motor has a piezoelectric element that is connected to a resonator, and a driven element that interacts with the piezoelectric motor. During the service life of the motor and resonator at least one operating state variable changes, and the change in operating variable is used to help avoid failure of the piezoelectric motor.
摘要:
A single piezoelectric is excited at a first frequency to cause two vibration modes in a resonator producing a first elliptical motion in a first direction at a selected contacting portion of the resonator that is placed in frictional engagement with a driven element to move the driven element in a first direction. A second frequency excites the same piezoelectric to cause two vibration modes of the resonator producing a second elliptical motion in a second direction at the selected contacting portion to move the driven element in a second direction. The piezoelectric is preloaded in compression by the resonator. Walls of the resonator are stressed past their yield point to maintain the preload. Specially shaped ends on the piezoelectric help preloading. The piezoelectric can send or receive vibratory signals through the driven element to or from sensors to determine the position of the driven element relative to the piezoelectric element or resonator. Conversely, the piezoelectric element can receive vibration or electrical signals passed through the driven element to determine the position of the driven element. The resonator is resiliently urged against the driven element, or vice versa. Plural resonators can drive common driven elements.
摘要:
A single piezoelectric is excited at a first frequency to cause two vibration modes in a resonator producing a first elliptical motion in a first direction at a selected contacting portion of the resonator that is placed in frictional engagement with a driven element to move the driven element in a first direction. A second frequency excites the same piezoelectric to cause two vibration modes of the resonator producing a second elliptical motion in a second direction at the selected contacting portion to move the driven element in a second direction. The piezoelectric is preloaded in compression by the resonator. Walls of the resonator are stressed past their yield point to maintain the preload. Specially shaped ends on the piezoelectric help preloading. The piezoelectric can send or receive vibratory signals through the driven element to or from sensors to determine the position of the driven element relative to the piezoelectric element or resonator. Conversely, the piezoelectric element can receive vibration or electrical signals passed through the driven element to determine the position of the driven element. The resonator is resiliently urged against the driven element, or vice versa. Plural resonators can drive common driven elements.
摘要:
The present invention relates to a drive system comprising at least one motor with at least one vibration generator each as well as at least one resonator each and a device driven by said motor, wherein the resonator comprises a contact area that cooperates with the surface of the device in order to drive said device.
摘要:
A single piezoelectric is excited at a first frequency to cause two vibration modes in a resonator producing a first elliptical motion in a first direction at a selected contacting portion of the resonator that is placed in frictional engagement with a driven element to move the driven element in a first direction. A second frequency excites the same piezoelectric to cause two vibration modes of the resonator producing a second elliptical motion in a second direction at the selected contacting portion to move the driven element in a second direction. The piezoelectric is preloaded in compression by the resonator. Walls of the resonator are stressed past their yield point to maintain the preload. Specially shaped ends on the piezoelectric help preloading. The piezoelectric can send or receive vibratory signals through the driven element to or from sensors to determine the position of the driven element relative to the piezoelectric element or resonator. Conversely, the piezoelectric element can receive vibration or electrical signals passed through the driven element to determine the position of the driven element. The resonator is resiliently urged against the driven element, or vice versa. Plural resonators can drive common driven elements.
摘要:
A single piezoelectric is excited at a first frequency to cause two vibration modes in a resonator producing a first elliptical motion in a first direction at a selected contacting portion of the resonator that is placed in frictional engagement with a driven element to move the driven element in a first direction. A second frequency excites the same piezoelectric to cause two vibration modes of the resonator producing a second elliptical motion in a second direction at the selected contacting portion to move the driven element in a second direction. The piezoelectric is preloaded in compression by the resonator. Walls of the resonator are stressed past their yield point to maintain the preload. Specially shaped ends on the piezoelectric help preloading. The piezoelectric can send or receive vibratory signals through the driven element to or from sensors to determine the position of the driven element relative to the piezoelectric element or resonator. Conversely, the piezoelectric element can receive vibration or electrical signals passed through the driven element to determine the position of the driven element. The resonator is resiliently urged against the driven element, or vice versa. Plural resonators can drive common driven elements.
摘要:
A single piezoelectric is excited at a first frequency to cause two vibration modes in a resonator producing a first elliptical motion in a first direction at a selected contacting portion of the resonator that is placed in frictional engagement with a driven element to move the driven element in a first direction. A second frequency excites the same piezoelectric to cause two vibration modes of the resonator producing a second elliptical motion in a second direction at the selected contacting portion to move the driven element in a second direction. The piezoelectric is preloaded in compression by the resonator. Walls of the resonator are stressed past their yield point to maintain the preload. Specially shaped ends on the piezoelectric help preloading. The piezoelectric can send or receive vibratory signals through the driven element to or from sensors to determine the position of the driven element relative to the piezoelectric element or resonator. Conversely, the piezoelectric element can receive vibration or electrical signals passed through the driven element to determine the position of the driven element. The resonator is resiliently urged against the driven element, or vice versa. Plural resonators can drive common driven elements.
摘要:
A single piezoelectric is excited at a first frequency to cause two vibration modes in a resonator producing a first elliptical motion in a first direction at a selected contacting portion of the resonator that is placed in frictional engagement with a driven element to move the driven element in a first direction. A second frequency excites the same piezoelectric to cause two vibration modes of the resonator producing a second elliptical motion in a second direction at the selected contacting portion to move the driven element in a second direction. The piezoelectric is preloaded in compression by the resonator. Walls of the resonator are stressed past their yield point to maintain the preload. Specially shaped ends on the piezoelectric help preloading. The piezoelectric can send or receive vibratory signals through the driven element to or from sensors to determine the position of the driven element relative to the piezoelectric element or resonator. Conversely, the piezoelectric element can receive vibration or electrical signals passed through the driven element to determine the position of the driven element. The resonator is resiliently urged against the driven element, or vice versa. Plural resonators can drive common driven elements.
摘要:
The invention relates to a piezoelectric motor comprising a piezoelectric component that is connected to a resonator and a two-dimensional resonator that interacts with a movable. element, the resonator having principal surfaces that are parallel to each other and that are also identical in shape and size. The invention further relates to methods for producing such piezoelectric motors, wherein the resonators are manufactured by cutting a profiled, extruded bar into lengths or by cutting, preferably by punching, from sheet metal having constant thickness. Finally, this invention relates to a method for exciting such a piezoelectric motor, wherein the excitation frequency or frequencies is/are generated by the control electronics as a function of time in response to the respective peak current and/or in response to the respective phase minimum between current and voltage and/or in response to the change in phase.