Abstract:
A variable turbine geometry (VTG) turbocharger (100) includes a VTG assembly (25) for controlling guide vanes (30) in combination with a wastegate assembly (60, 260) having a wastegate valve (62, 262) configured to control exhaust gas flow through a wastegate port (7) in the turbine housing (4) thereby selectively bypassing the turbine wheel (12). The guide vanes (30) are actuated continuously, while the wastegate valve (62, 262) only starts to open at a predetermined configuration of the VTG assembly (25) in which the guide vanes 30 are open to a set amount. For some exhaust gas flow rates, the guide vanes (30) and the wastegate valve (62, 262) are fully open at the same time. A common actuator (110, 50) controls both the guide vanes (30) and the wastegate valve (62, 262) of the wastegate assembly (60, 260).
Abstract:
In accordance with one aspect of the present disclosure, a turbocharger includes a compressor having a compressor wheel, a turbine provided within a housing, and an exhaust gas recirculation (EGR) flow path. The EGR flow path includes a first fluid connection in the housing and located in proximity to the turbine, a second fluid connection located in proximity to a trailing edge of the compressor wheel, an EGR control valve disposed between the first fluid connection and the second fluid connection, the EGR control valve configured to selectively operate the turbocharger in a low-heat mode having an EGR up to 50% and an operational mode having an EGR rate typically less than 35%.
Abstract:
In accordance with one aspect of the present disclosure, a turbocharger includes a compressor having a compressor wheel, a turbine provided within a housing, and an exhaust gas recirculation (EGR) flow path. The EGR flow path includes a first fluid connection in the housing and located in proximity to the turbine, a second fluid connection located in proximity to a trailing edge of the compressor wheel, an EGR control valve disposed between the first fluid connection and the second fluid connection, the EGR control valve configured to selectively operate the turbocharger in a low-heat mode having an EGR up to 50% and an operational mode having an EGR rate typically less than 35%.
Abstract:
A wastegate assembly with a valve head moved linearly toward and away from a wastegate port via a valve stem. When the valve is in an open position the valve seat face of the valve head is spaced apart from the valve seat. When the valve is in a closed position the valve seat face of the valve head is secured against the valve seat. The wastegate assembly includes a sidewall surrounding the wastegate port elongated in the direction of valve movement. The contoured side wall widens going away from the valve seat. The minimum flow area through the wastegate port is controlled such that the flow is choked via the side wall rather than the valve curtain area. The contoured side wall can be recessed into the housing or extend from the housing.
Abstract:
An exhaust gas turbocharger with a wastegate port configured to permit some exhaust gas flow to exit a turbine volute upstream of the turbine wheel and enter a bypass channel thereby bypassing the turbine wheel, a valve with a valve head dimensioned to seat on a valve seat and to move between a seated position and an open position, the bypass channel having a sidewall contoured to surround the valve head as the valve head moves between the seated position and the open position, he bypass channel sidewall shaped so that a throat area (At) area between the bypass channel sidewall and valve head gradually increases as the valve head moves between the seated and the open position, such the bypass flow is controlled by the throat area (At) and not the area between the valve head and the valve seat.
Abstract:
In accordance with one aspect of the present disclosure, a turbocharger includes a compressor having a compressor wheel, a turbine provided within a housing, and an exhaust gas recirculation (EGR) flow path. The EGR flow path includes a first fluid connection in the housing and located in proximity to the turbine, a second fluid connection located in proximity to a trailing edge of the compressor wheel, an EGR control valve disposed between the first fluid connection and the second fluid connection, the EGR control valve configured to selectively operate the turbocharger in a low-heat mode having an EGR up to 50% and an operational mode having an EGR rate typically less than 35%.
Abstract:
A wastegate assembly with a valve head moved linearly toward and away from a wastegate port via a valve stem. When the valve is in an open position the valve seat face of the valve head is spaced apart from the valve seat. When the valve is in a closed position the valve seat face of the valve head is secured against the valve seat. The wastegate assembly includes a sidewall surrounding the wastegate port elongated in the direction of valve movement. The contoured side wall widens going away from the valve seat. The minimum flow area through the wastegate port is controlled such that the flow is choked via the side wall rather than the valve curtain area. The contoured side wall can be recessed into the housing or extend from the housing.
Abstract:
A plurality of guide vanes (34) in a variable turbine geometry turbocharger (10) regulates a flow of exhaust gas. The guide vanes (34) are selectively adjustable between an open position to allow the flow of exhaust gas to drive a turbine wheel (24) and a closed position to block the flow of exhaust gas. A first flow feature (58) is disposed on first (44) and second (46) edges of the guide vanes (34) to disturb the flow of exhaust gas to prevent leakage of exhaust gas around the first (44) and second (46) edges. A second flow feature (64) is disposed on front (60) and rear (62) surfaces of the guide vanes (34) to channel the flow of exhaust gas between adjacent guide vanes (34) when the guide vanes (34) are in the open position to prevent swirling and/or cross flow of the exhaust gas.
Abstract:
A plurality of guide vanes (34) in a variable turbine geometry turbocharger (10) regulates a flow of exhaust gas. The guide vanes (34) are selectively adjustable between an open position to allow the flow of exhaust gas to drive a turbine wheel (24) and a closed position to block the flow of exhaust gas. A first flow feature (58) is disposed on first (44) and second (46) edges of the guide vanes (34) to disturb the flow of exhaust gas to prevent leakage of exhaust gas around the first (44) and second (46) edges. A second flow feature (64) is disposed on front (60) and rear (62) surfaces of the guide vanes (34) to channel the flow of exhaust gas between adjacent guide vanes (34) when the guide vanes (34) are in the open position to prevent swirling and/or cross flow of the exhaust gas.