摘要:
A QR-RLS adaptive digital filter provides fast computation without excessive computational resources. 18-bit multipliers enhance speed, and a floating point inverse square root block adjusts dynamic range in 12-dB steps. A memory stores two P-matrix copies, one being delivered with rows shifted according to the clock speed so as to enhance pipeline processing. Embodiments reliably detect modulation schemes, demodulate strong signals by passing feedback bits between multiple stages, remove impulses due to lightening, etc, erase symbol estimates which exceed an error threshold, and add high frequency noise to avoid mathematical divergence caused by excessive S/N. A genetic method is provided for identifying asynchronous spreading codes with minimum correlations, whereby randomly selected candidates compete based on Frobenius norms of their correlations, the weakest being discarded and the process being iterated. A method is provided for selecting optimal filter sampling windows for simultaneously detected symbol streams having relative timing delays.
摘要:
A QR-RLS adaptive digital filter provides fast computation without excessive computational resources. 18-bit multipliers enhance speed, and a floating point inverse square root block adjusts dynamic range in 12-dB steps. A memory stores two P-matrix copies, one being delivered with rows shifted according to the clock speed so as to enhance pipeline processing. Embodiments reliably detect modulation schemes, demodulate strong signals by passing feedback bits between multiple stages, remove impulses due to lightening, etc, erase symbol estimates which exceed an error threshold, and add high frequency noise to avoid mathematical divergence caused by excessive S/N. A genetic method is provided for identifying asynchronous spreading codes with minimum correlations, whereby randomly selected candidates compete based on Frobenius norms of their correlations, the weakest being discarded and the process being iterated. A method is provided for selecting optimal filter sampling windows for simultaneously detected symbol streams having relative timing delays.
摘要:
What is provided is a system for maintaining acceptable error rates in a MUD-enabled ad-hoc network. In this system the power spread associated with all of the nodes is maintained within the dynamic range of the system, for instance 30 dB. Also, the signal-to-noise ratio at an intended receiver is maintained above a predetermined minimum SNR, for instance above 5 dB. If the dynamic range rule is not met, then the power at the transmitting node is attenuated such that the dynamic range rule is met, checking to see that the minimum SNR rule is also met, or the transmission from this node is pulled. If there is no power control solution, then power aware scheduling is applied. Alternatively, only power aware scheduling is utilized.
摘要:
What is provided is a system for maintaining acceptable error rates in a MUD-enabled ad-hoc network. In this system the power spread associated with all of the nodes is maintained within the dynamic range of the system, for instance 30 dB. Also, the signal-to-noise ratio at an intended receiver is maintained above a predetermined minimum SNR, for instance above 5 dB. If the dynamic range rule is not met, then the power at the transmitting node is attenuated such that the dynamic range rule is met, checking to see that the minimum SNR rule is also met, or the transmission from this node is pulled. If there is no power control solution, then power aware scheduling is applied. Alternatively, only power aware scheduling is utilized.
摘要:
A method is disclosed for increasing the communication capacity of a shared ad-hoc wireless channel by using multiuser detection (MUD) to distinguish overlapping information transmitted simultaneously by a plurality of nodes. The transmitting nodes simultaneously provide parameter-estimating signals over separate, unshared, low-rate parameter channels generated using orthogonal frequencies, spread spectrum technology, or time multiplexing. Receiving nodes use these separate, non-overlapping parameter-estimating signals to estimate MUD-required signal parameters such as amplitude, phase, and frequency offset, thereby enabling use of lower complexity MUD receivers, because the parameters are not estimated in the presence of other interference. Node ID, spreading code type, and/or other information can also be transmitted over the parameter channels. Limiting the number of parameter channels can limit the maximum number of transmitting nodes. Amplitudes of parameter channel transmissions can be greater than communication channel transmissions by a known ratio. Parameter channels can be frequency-hopped for jam-resistance.