Abstract:
A control system for a switched reluctance (SR) machine having a rotor and a stator is provided. The control system may include a converter circuit in electrical communication between the stator and a common bus, and a controller configured to monitor a bus voltage of the converter circuit and a phase current of the SR machine. The controller may be configured to determine a phase voltage based on one or more of main pulses and any diagnostic pulses, determine an estimated flux based on the phase voltage and an associated mutual voltage, determine a rotor position based at least partially on the estimated flux, and control the SR machine based on the rotor position and a desired torque.
Abstract:
Power based self-sensing of a rotor position of an SR motor at mid to high speeds and low torque is achieved by an SR motor control system by comparing the motor power to an injection maximum power. A position current pulse is injected to a stator pole in response to the motor power being less than the injection maximum power. An actual stator current created by the position current pulse is compared to an estimated stator current, and a stored estimated rotor position in a memory is updated to a new estimated rotor position if the actual stator current is not equal to the estimated stator current.
Abstract:
A work machine includes a frame, a traction system supporting the frame, a power source mounted on the frame, a switched reluctance motor, an inverter configured to control power to the motor from a power source, and a controller. The controller is configured to receive a signal indicating a desired torque and determine if the desired torque is between an upper threshold and a lower threshold. If the desired torque is between the upper threshold and the lower threshold, pulse width modulation is used to produce a PWM adjusted torque command, and the motor is commanded based on the PWM adjusted torque command. The PWM adjusted torque command is configured to cycle between the upper threshold and the lower threshold to produce the desired torque.
Abstract:
A system and method for estimating a position and a speed of a rotor of a Switched Reluctance (SR) machine is provided. The SR machine comprises the rotor, a stator and at least one winding. The method includes generating a diagnostic pulse having a trapezoidal shape. The method further includes injecting a diagnostic pulse into the at least one winding of the SR machine. The method further includes measuring an actual stator current flowing through the at least one winding of the SR machine. The method further includes computing an estimated stator current flowing through the at least one winding using observer-based estimation technique. The estimated stator current is compared with the actual stator current to compute an error signal. At least one of the position and the speed of the rotor is estimated based on the error signal.
Abstract:
A method for determining rotor position of a switched reluctance (SR) machine having a rotor and a stator is provided. The method may include injecting a test pulse into one or more idle phases of the SR machine, determining a decoupled flux value based at least partially on a total flux value corresponding to the test pulse and a mutual flux value, and determining the rotor position based at least partially on the decoupled flux value.
Abstract:
A system and method for torque compensation in a switched reluctance (SR) machine disposed on a machine is disclosed. The system may comprise a SR machine, an inverter and a controller. The controller is in operable communication with the inverter and is configured to determine a commanded main current associated with energization by a main current of a first portion of the plurality of windings for a controlling phase, and determine a commanded parasitic current associated with energization by a parasitic current of a second portion of the windings in a non-controlling phase. The controller is further configured to determine an offset current based on the commanded parasitic current, and determine a target current based on a first sum of the commanded main current and the offset current, and command the inverter to actuate the target current in the first portion of the windings during the controlling phase.
Abstract:
A system and method for torque compensation in a switched reluctance (SR) machine disposed on a machine is disclosed. The system may comprise a SR machine, an inverter and a controller. The controller is in operable communication with the inverter and is configured to determine a commanded main current associated with energization by a main current of a first portion of the plurality of windings for a controlling phase, and determine a commanded parasitic current associated with energization by a parasitic current of a second portion of the windings in a non-controlling phase. The controller is further configured to determine an offset current based on the commanded parasitic current, and determine a target current based on a first sum of the commanded main current and the offset current, and command the inverter to actuate the target current in the first portion of the windings during the controlling phase.
Abstract:
A control system for a switched reluctance (SR) machine having a rotor and a stator is provided. The control system may include a converter circuit in electrical communication between the stator and a common bus, and a controller configured to monitor a bus voltage of the converter circuit and a phase current of the SR machine. The controller may be configured to determine a phase voltage based on one or more of main pulses and any diagnostic pulses, determine an estimated flux based on the phase voltage and an associated mutual voltage, determine a rotor position based at least partially on the estimated flux, and control the SR machine based on the rotor position and a desired torque.
Abstract:
A method for determining rotor position of a switched reluctance (SR) machine having a rotor and a stator is provided. The method may include injecting a test pulse into one or more idle phases of the SR machine, determining a decoupled flux value based at least partially on a total flux value corresponding to the test pulse and a mutual flux value, and determining the rotor position based at least partially on the decoupled flux value.
Abstract:
A work machine includes a frame, a traction system supporting the frame, a power source mounted on the frame, a switched reluctance motor, an inverter configured to control power to the motor from a power source, and a controller. The controller is configured to receive a signal indicating a desired torque and determine if the desired torque is between an upper threshold and a lower threshold. If the desired torque is between the upper threshold and the lower threshold, pulse width modulation is used to produce a PWM adjusted torque command, and the motor is commanded based on the PWM adjusted torque command. The PWM adjusted torque command is configured to cycle between the upper threshold and the lower threshold to produce the desired torque.