Abstract:
Methods and systems for predicting hydrocarbon production and production uncertainty are disclosed. Exemplary implementations may: obtain training data, the training data including (i) training production data, (ii) training engineering parameters, and (iii) a training set of geological parameters and corresponding training geological parameter uncertainty values; obtain an initial production model; generate a trained production model by training the initial production model; store the trained production model; obtain a target set of geological parameters and corresponding target geological parameter uncertainty values and target engineering parameters; apply the trained production model to generate a set of production values and corresponding production uncertainty values; generate a representation using visual effects to depict at least a portion of the set of production values and corresponding production uncertainty values as a function of position within the subsurface volume of interest; and display the representation.
Abstract:
Systems and methods for estimating reservoir productivity as a function of position in a subsurface volume of interest are disclosed. Exemplary implementations may: obtain subsurface data and well data corresponding to a subsurface volume of interest; obtain a parameter model; use the subsurface data and the well data to generate multiple production parameter maps; apply the parameter model to the multiple production parameter maps to generate refined production parameter values; generate multiple refined production parameter graphs; display the multiple refined production parameter graphs; generate one or more user input options; receive a defined well design and the one or more user input options selected by a user to generate limited production parameter values; generate a representation of estimated reservoir productivity as a function of position in the subsurface volume of interest using the defined well design and visual effects; and display the representation.
Abstract:
Systems and methods for estimating a likelihood of an object element in a given position in a subsurface volume of interest are disclosed. Exemplary implementations may: obtain target subsurface data from the subsurface volume of interest; obtain an object element set corresponding to the subsurface volume of interest; generate correlation values as a function of position in the subsurface volume of interest by applying the object filters to the target subsurface data; and generate object element likelihood values by applying the object templates to positions in the subsurface volume of interest corresponding to the correlation values.
Abstract:
Methods and systems for predicting hydrocarbon production and production uncertainty are disclosed. Exemplary implementations may: obtain training data, the training data including (i) training production data, (ii) training engineering parameters, and (iii) a training set of geological parameters and corresponding training geological parameter uncertainty values; obtain an initial production model; generate a trained production model by training the initial production model; store the trained production model; obtain a target set of geological parameters and corresponding target geological parameter uncertainty values and target engineering parameters; apply the trained production model to generate a set of production values and corresponding production uncertainty values; generate a representation using visual effects to depict at least a portion of the set of production values and corresponding production uncertainty values as a function of position within the subsurface volume of interest; and display the representation.
Abstract:
Systems and methods for estimating a likelihood of an object element in a given position in a subsurface volume of interest are disclosed. Exemplary implementations may: obtain target subsurface data from the subsurface volume of interest; obtain an object element set corresponding to the subsurface volume of interest; generate correlation values as a function of position in the subsurface volume of interest by applying the object filters to the target subsurface data; and generate object element likelihood values by applying the object templates to positions in the subsurface volume of interest corresponding to the correlation values.
Abstract:
Methods and systems for trend modeling of subsurface properties are disclosed. One method includes defining a stratigraphic grid of a subsurface volume, the stratigraphic grid including a plurality of columns and a plurality of layers. The method further includes determining, for each layer or column, an initial average property value based at least in part on well data in the subsurface volume and a confidence interval around that initial average property value defining a range of likely values for a target average property value. The method also includes receiving one or more user-defined edits to the initial average property value in one or more of the layers or columns, the one or more edits resulting in the modeled target average property value, and determining whether the modeled target average property value falls within the confidence interval.