Abstract:
To make a lamp of quartz or hard glass which has a bulb (10, 22) which doesot have an exhaust tip, for example a metal halide high-pressure discharge lamp or a halogen incandescent lamp, the glass bulb is formed by blow-molding the bulb to the desired shape, then retaining an electrode system having electrodes (14, 14a) to be placed in the bulb, current supply leads (12, 24) extending externally of the bulb, and sealing foils (13, 23) connecting the current supply leads to the electrodes in a holder die (11, 25), introducing the electrodes by moving the holder die towards the bulb, flushing the bulb by introducing and selectively removing flushing gas through an open end of the tube, introducing a measured quantity of a fill substance, such as mercury, an iodide or the like, into the bulb through the open end thereof, and then heating the bulb in the region of the position of the sealing foils and pinch-sealing the bulb. Excess glass is then cut off and the bulb can be supplied with a base. To introduce the fill gas and fill substances, the holder die can be formed with a through-opening through which gas exchange can take place and fill substances, for example in form of pellets or pills introduced. The pinch-sealing can be carried out in two steps, one step pinch-sealing the electrode system but leaving capillary openings (62) adjacent the side walls of the tube to permit gas exchange. The capillaries can then be melted shut by a pointed flame.
Abstract:
To protect tungsten electrode shafts (2, 3; 15, 16) extending into the a rtz glass discharge chamber (13, 27) of a high-pressure discharge lamp from attack by metal halides included in the fill to improve the color rendition of the discharge, the electrode shafts (2, 3; 15, 16) are tightly surronded by small tubes (11, 12; 25, 26) of electrically insulating material, which is highly temperature resistant, located in part within the press seal (10; 23, 24) and fitted against the ends of sealing foils (6, 7; 19, 20) which face the discharge chamber. The tube elements extend at least about 0.5 mm beyond the inner ends of the press seal (10; 23, 24) into the discharge chamber (13, 27) and are formed of a material which has a thermal coefficient of expansion which is not lower than that of quartz glass and not higher than that of tungsten.
Abstract:
Luminous body for an incandescent lamp and method for producing such a luminous body. A wire for a luminous body is used whose diameter increases from the outside in. The production method is based either on a deposition method or a metal-removal method.
Abstract:
A reflector lamp, in particular a halogen reflector lamp, has a light-transmitting lamp vessel, in which at least one luminous member is accommodated, at least one vessel section of the lamp vessel being provided with a reflective coating. According to the invention, the reflective coating has an interference filter, which is substantially impervious to light in the visible wavelength range and has defined transmission and reflection properties for light in the infrared wavelength range.
Abstract:
A light source comprising a heatable filament (1) or an electrode, wherein the filament (1) or the electrode is arranged in a lamp (2) or in a tube. In order to use the light source in a wide variety of manners even in rough conditions, the filament (1) or the electrode is provided at least partially with a mechanical stabilization system. The invention also relates to a method for mechanical stabilization of the filament (1) or electrode of a light source, wherein stabilization is produced by exposing the filament (1) or electrode to a short pulsed gas pressure increase, involving a rare gas, during heating. Stabilization may also be produced by a coating or deposition (4).
Abstract:
A reflector lamp whose lamp receptacle (1) is provided in part with a reflective coating (6) as well as a reflector contour. The coating is composed of at least two layers of highly heat-resistant metals. One of the layers reflects as well as possible while the superimposed layer absorbs as well as possible.
Abstract:
An incandescent lamp having a carbide containing luminous element, uses a wire for the luminous element that is coated on the outside with at least two different high melting metal compounds from at least one of the groups of carbides, borides and nitrides. The luminous element reaches a temperature of at least 3000° K during operation.
Abstract:
The invention relates to a light bulb comprising an illumination body, which is inserted, together with a filler material, into a bulb in a vacuum-tight manner. The illumination body has a metal carbide, whose melting point lies above that of tungsten. The current supply is configured in two parts from a first section and a second section. The current supply is configured integrally with the illumination body from a single wire and is covered with a coating that reduces the susceptibility to breakage.
Abstract:
The invention relates to an incandescent lamp (1) which is provided with an illuminant (7) which is inserted in a bulb (2) together with a filling in a vacuum-tight manner, the illuminant (7) comprising a metal carbide that has a melting point above that of tungsten. The bulb also comprises a source and a sink for a material of which the illuminant is depleted during use.
Abstract:
The invention relates to an incandescent lamp having a carbide-containing luminous element and current supplies holding the luminous element. A luminous element is introduced into a bulb together with a filling in a vacuum-tight manner, the luminous element having a metal carbide the melting point of which is preferably above that of tungsten, and the luminous element being helical. The luminous element has a core wire and a wrapped filament and is constituted of various materials and contains a metal carbide.