Abstract:
A base station antenna includes a first radio frequency (“RF”) port; a second RF port; a first array of radiating elements that includes a first radiating element, the first radiating element including first and second radiators each having the first polarization direction, wherein the first radiator is coupled to the first RF port; a second array of radiating elements that includes a second radiating element, the second radiating element including a third radiator having the first polarization direction; and a first power divider having a first input that is coupled to the second RF port, and first and second outputs that are respectively coupled to the second and third radiators.
Abstract:
A twin beam base station antenna includes a first array that has a plurality of columns of first frequency band radiating elements, the first array configured to form a first antenna beam that provides coverage throughout a first sub-sector of a three-sector base station. The radiating elements in a first of the columns in the first array have a first azimuth boresight pointing direction and the radiating elements in a second of the columns in the first array have a second azimuth boresight pointing direction that is offset from the first azimuth boresight pointing direction by at least 10°. The radiating elements in the second of the columns in the first array are electrically steered.
Abstract:
Apparatus include two or more radiating elements connected to a feed network of an antenna, and one or more dummy elements positioned between the two or more radiating elements. The dummy elements are not connected to the feed network of the antenna. Such an arrangement may result in reduced mutual coupling of the two or more radiating elements, and increased antenna performance.
Abstract:
A radiator for an antenna comprises a radiating element having a radiating arm and a feed portion and a first dielectric structure configured to cover at least 50% of the radiating element, the dielectric structure having a dielectric constant of at least 3.0. The dielectric structure reduces a first electrical length of the radiating arm by at least 20% and also reduces a second electrical length of the feed portion by at least 20%.
Abstract:
Base station antenna include an RF port, a reflector, a linear array of radiating elements mounted to extend forwardly from the reflector, and a feed network that electrically connects the RF port to each of the radiating elements in the linear array. The radiating elements are configured to operate in a first frequency band. A first of the radiating elements is a cross-dipole radiating element that includes a feed stalk, a cross-dipole radiator that includes a first −45° polarization dipole radiator and a first +45° polarization dipole radiator mounted on the feed stalk, and an active director that includes a second −45° polarization dipole radiator and a second +45° polarization dipole radiator mounted forwardly of the cross-dipole radiator. Both the cross-dipole radiator and the active director are coupled to the feed network.
Abstract:
A twin beam base station antenna includes a first array that has a plurality of columns of first frequency band radiating elements, the first array configured to form a first antenna beam that provides coverage throughout a first sub-sector of a three-sector base station. The radiating elements in a first of the columns in the first array have a first azimuth boresight pointing direction and the radiating elements in a second of the columns in the first array have a second azimuth boresight pointing direction that is offset from the first azimuth boresight pointing direction by at least 10°. The radiating elements in the second of the columns in the first array are electrically steered.
Abstract:
A radiating element includes a feed stalk and first through fourth dipole arms. An outer segment of the first dipole arm and an outer segment of the second dipole arm are configured to together form a first radiating structure that radiates at a first polarization, an outer segment of the third dipole arm and an outer segment of the fourth dipole arm are configured to together form a second radiating structure that radiates at the first polarization, and first and second inner portions of each of the first through fourth dipole arms are configured to together form a third radiating structure that radiates at the first polarization when a first RF signal is fed to the radiating element.
Abstract:
A box dipole radiating element uses a compact quad arrangement of substantially coplanar radiating arms to support slant-polarized radiation, in response to differential-mode currents generated along four sides thereof and in response to common-mode currents, which may be generated in substantially the same plane as the differential-mode currents. A feed signal routing network is provided, which includes a feed signal routing substrate on portions of the radiating arms, first through fourth signal traces on a forward face of the substrate, and first through fourth ground plane segments on a rear face of the substrate. These first through fourth ground plane segments are capacitively coupled to the radiating arms. Each of the signal traces receives a corresponding feed signal, and spans a corresponding air gap between a pair of the radiating arms.
Abstract:
A radiating element comprises a first radiator having first and second dipole arms that each include a narrowed arm segment and a widened arm segment and a second radiator having third and fourth dipole arms that each include a narrowed arm segment and a widened arm segment, a first feed line configured to feed a first polarized RF signal to the first through fourth dipole arms, and a second feed line configured to feed a second polarized RF signal to the first through fourth dipole arms.
Abstract:
A patch antenna comprises a multilayer printed circuit board that includes a calibration network, an array of patch radiators and a feed network. In some embodiments, the multilayer printed circuit board includes a plurality of dielectric substrates, wherein the array of patch radiators is provided on a dielectric substrate different from the dielectric substrate on which the calibration network is provided, and the dielectric substrate provided with the array of patch radiators is provided above the dielectric substrate provided with the calibration network.