Abstract:
A vibration damper for a vehicle suspension system includes a pumping cylinder concentrically aligned inside a housing defining a pumping chamber having a piston stroking therein for reducing the level of vehicle vibration. An intermediate cylinder defines an intermediate chamber with the pumping cylinder and an outer chamber with the housing. Suspension fluid flows throughout each of the chambers. A valve is operably connected to an air supply of a suspension system having an air pressure relative to a mass loaded on the vehicle. The controls the distribution of fluid between the chambers relative to the pressure of the air supply and controls the amount of vibration damping inside the pumping chamber relative to the mass loaded on the vehicle.
Abstract:
The invention provides a damper assembly (10) comprising a housing (12) defining an inner chamber (22, 24) having a damping fluid disposed therein. A piston rod (14) is slidably retained by the housing (12), and at least partially extends into, the chamber (22, 24). A piston (18) is disposed at a first distal end (21) of the piston rod (14) and strokes inside the housing (12). The piston (18) defines a first chamber (22) and a second chamber (24) within the housing (12) and includes at least one aperture (26) for allowing damping fluid to flow between the first (22) and second (24) chambers. An actuator (30) is disposed within the piston (18) for varying the flow of damping fluid through the aperture (26) between the first (22) and second (24) chambers within the housing (12). The piston rod (14) includes an inner bore (16) that receives pressurized air from an external source for communicating pneumatic control signals to the actuator (30).
Abstract:
A vehicle steering system includes a steering wheel and a steering shaft coupled between the steering wheel and wheels of the vehicle. The shaft is operable for rotating when the steering wheel is turned to thereby turn the vehicle wheels. A vibration damping system for absorbing vibrations in the steering wheel and shaft includes a rotor coupled to the steering shaft to rotate with the shaft and a case surrounding the rotor and a clutch surface proximate the rotor. A magnetic circuit generates a magnetic flux in the rotor. The rotor is operable to engage the clutch surface and thereby vibrationally couple the steering shaft to the case to absorb vibrations in the shaft, and when a magnetic flux is generated therein, to disengage the clutch surface so that the steering shaft may more freely rotate.
Abstract:
A damper includes a piston that carries a relatively compact control valve for controlling fluid flow through the piston. The control valve provides a variable amount of damping by regulating damper fluid flow between the extension chamber and the compression chamber of the damper during extension and compression strokes. Pressure regulation across the piston is controlled through a flow path as determined by the control valve. The damping force of the damper varies depending upon the loading conditions of the vehicle. The control valve is air pressure actuated to adjust the damping force and control the flow of fluid in the flow path. The piston and rod assembly include unique features such as a seal plate design, and spring retainer that aid in the efficient and reliable assembly in a commercial production setting.
Abstract:
A valve spool for a suspension damper comprises a body portion and a bridge connected to the body portion. The body portion has an upper edge, and the bridge extends at least partially beyond the upper edge of the body portion.
Abstract:
The problem of flow induced instability in a control valve for a vehicle damper is solved by a generally tubular shaped valve spool having an open, bridged, flow-through end, rather than side flow openings. The flow-through end of the spool has a narrow flat edge oriented perpendicularly to the axis of the spool, with an inside surface of the spool forming a 55 to 90 degree angle with the flat edge, and meeting the flat edge in a sharp corner.