Abstract:
An ejector has a swirling space, a pressure reducing space, a suction passage, a pressure increasing space, a nozzle passage, a diffuser passage, a passage forming member that forms the nozzle passage and the diffuser passage, and a vibration suppressing portion that suppresses a vibration of the passage forming member. The vibration suppressing portion has (i) a first elastic member that applies a load to the passage forming member in a direction in which an area of a cross section perpendicular to the direction of the central axis of the nozzle passage and the diffuser passage decreases and (ii) a second elastic member that applies a load to the passage forming member in a direction opposite from the direction in which the first elastic member applies the load to the passage forming member.
Abstract:
In an ejector, formed in a body is a swirling space which lets a high-pressure refrigerant flowing from a refrigerant inlet port swirl and introduces the swirling high-pressure refrigerant into a depressurizing space in which the swirled high-pressure refrigerant is depressurized and expanded. A passage formation member that defines a nozzle passage and a diffuser passage is shaped to have a cross-sectional area increasing with distance from the depressurizing space. Further, a temperature sensing unit of a drive device that displaces the passage formation member is housed in the body, and the temperature sensing unit and a diaphragm have annular shapes to surround at least the axial line of the passage formation member.
Abstract:
An adsorption heat pump using a heat source having a lower temperature and an adsorbent which has a large difference in water adsorption amount in adsorption/desorption and can be regenerated at a low temperature. An adsorption heat pump including an adsorbate, an adsorption/desorption part having an adsorbent for adsorbate adsorption/desorption, a vaporization part for adsorbate vaporization connected to the adsorption/desorption part, and a condensation part for adsorbate condensation connected to the adsorption/desorption part, wherein the adsorbent, when examined at 25° C., gives a water vapor adsorption isotherm which, in the relative vapor pressure range of from 0.05 to 0.30, has a relative vapor pressure region in which a change in relative vapor pressure of 0.15 results in a change in water adsorption amount of 0.18 g/g or larger.