Abstract:
A first process to produce polycarbamate comprising providing urea in liquid form; and adding the liquid urea to a polyol is provided. A second process for producing polycarbamate comprising adding solid urea to a polyol in liquid form to form a reaction mixture is provided. Also provided is a reaction product produced by the first process or second process.
Abstract:
Brominated styrene-butadiene copolymers are recovered from solution in an organic solvent. The copolymer solution is mixed with a liquid non-solvent in the presence of a suspension stabilizer to form a dispersion. The dispersion is heated to vaporize the organic solvent. This process produces precipitated copolymer particles having useful particle sizes, which can be easily used in downstream applications.
Abstract:
A first process to produce polycarbamate comprising providing urea in liquid form; and adding the liquid urea to a polyol is provided. A second process for producing polycarbamate comprising adding solid urea to a polyol in liquid form to form a reaction mixture is provided. Also provided is a reaction product produced by the first process or second process.
Abstract:
A process to prepare polycarbamate comprising adding urea to a polyol in the presence of at least one catalyst selected from the group consisting of compounds having the following formula MmZn; wherein M is a tetravalent metal, and Z is an anionic functionality or a functionality capable of forming a covalent bond with M and wherein n times a valence number of Z equals X and m times four equals Y wherein the absolute value of X equals the absolute value of Y is provided. Also provided are a polycarbamate produced according to the process and a coating composition comprising the polycarbamate.
Abstract:
Conjugated diene polymers such as a styrene-butadiene copolymer are sequentially brominated by reaction with a quaternary ammonium tribromide or quaternary phosphonium tribromide and halohydrated by reaction with an N-haloimide compound. This produces a brominated and halohydrated polymer with very good thermal stability. The product is useful as a flame retardant in a variety of polymer systems.
Abstract:
A polycarbamate comprising having less than 5 wt % total of biuret, cyanuric acid, and polyallophanate; and has a Gardner level of equal or greater than 3 is provided. A coating comprising the polycarbamate is also provided.
Abstract:
A process to prepare polycarbamate comprising adding urea to a polyol in the presence of at least one catalyst selected from the group consisting of compounds having the following formula MmZn; wherein M is a divalent metal, and Z is an anionic functionality or a functionality capable of forming a covalent bond with M and wherein n times a valence number of Z equals X and m times two equals Y wherein the absolute value of X equals the absolute value of Y is provided. Also provided are a polycarbamate produced according to the process and a coating composition comprising the polycarbamate.
Abstract:
A process to prepare polycarbamate comprising adding urea to a polyol in the presence of at least one catalyst selected from the group consisting of compounds having the following formula MmZn; wherein M is a divalent metal, and Z is an anionic functionality or a functionality capable of forming a covalent bond with M and wherein n times a valence number of Z equals X and m times two equals Y wherein the absolute value of X equals the absolute value of Y is provided. Also provided are a polycarbamate produced according to the process and a coating composition comprising the polycarbamate.
Abstract:
The present disclosure provides a process for the production of 4-azidosulfonylphthalic anhydride. In an embodiment, a process is provided and includes chlorinating 4-sulfophthalic acid trisodium salt (1), under solvent reaction conditions, to form a dissolved 4-chlorosulfonylphthalic anhydride (2) and an insoluble sodium chloride. The process includes first removing the insoluble sodium chloride from the dissolved 4-chlorosulfonylphthalic anhydride to form an isolated 4-chlorosulfonylphthalic anhydride. The process includes reacting, under solvent reaction conditions, the isolated 4-chlorosulfonylphthalic anhydride with sodium azide to form a dissolved 4-azidosulfonylphthalic anhydride and an insoluble sodium chloride. The process includes second removing the insoluble sodium chloride from the dissolved 4-azidosulfonylphthalic anhydride to form an isolated 4-azidosulfonylphthalic anhydride. The process includes retrieving a solid 4-azidosulfonylphthalic anhydride (3) from the isolated 4-azidosulfonylphthalic anhydride.
Abstract:
A process to prepare polycarbamate comprising adding urea to a polyol in the presence of at least one catalyst selected from the group consisting of compounds having the following formula MmZn; wherein M is a trivalent metal, and Z is an anionic functionality or a functionality capable of forming a covalent bond with M and wherein n times a valence number of Z equals X and m times three equals Y wherein the absolute value of X equals the absolute value of Y is provided. Also provided are a polycarbamate produced according to the process and a coating composition comprising the polycarbamate.