Abstract:
An internally-cooled diaphragm for an internally-cooled compressor is provided. The internally-cooled diaphragm may include an annular body configured to cool a process fluid flowing through a fluid pathway of the internally-cooled compressor. The annular body may define a return channel of the fluid pathway, and a cooling pathway in thermal communication with the fluid pathway. The return channel may be configured to at least partially diffuse and de-swirl the process fluid flowing therethrough, and the cooling pathway may be configured to receive a coolant to absorb heat from the process fluid flowing through the return channel.
Abstract:
A pumped heat energy storage (PHES) system, involving an annular ducting arrangement is provided. Disclosed embodiments are believed to resolve the issue of containing a high temperature working fluid at elevated pressure by appropriately compartmentalizing by way of the annular ducting arrangement the functions of temperature management and pressure containment in a cost-effective and reliable manner.
Abstract:
A hybrid compressed air energy storage system is provided. A method of operation thereof includes compressing air during a storage period, and extracting thermal energy therefrom to produce a cooled compressed air. The cooled compressed air may be stored in an air storage unit, the extracted thermal energy may be stored in a thermal storage device, and the stored cooled compressed air may be heated with the stored extracted thermal energy to produce a heated compressed air during a generation period. The heated compressed air may be expanded with an expander to generate power and discharge an expanded air, which may be heated with a recuperator to produce a heated expanded air. A fuel mixture including the heated expanded air may be combusted to produce an exhaust gas, which may be expanded with a second expander to generate power and discharge the expanded exhaust gas to the recuperator.
Abstract:
Systems and methods for cooling one or more components of a gas turbine are provided. One system may include an expansion device and one or more conduits. The expansion device may be operatively coupled to the gas turbine and configured to convert a pressure drop of a stream of compressed process fluid to mechanical energy. The expansion device may be further configured to at least partially drive the gas turbine with the mechanical energy. The one or more conduits may fluidly couple the expansion device and the gas turbine. The one or more conduits may be configured to direct an expanded stream of the compressed process fluid to the one or more components of the gas turbine to cool the one or more components.
Abstract:
A method for producing liquefied natural gas (LNG) is provided. The method may include feeding natural gas from a high-pressure natural gas source to a separator and removing a non-hydrocarbon from the natural gas. A portion of the natural gas from the separator may be precooled, and the precooled natural gas may be cooled in a first heat exchanger with a first refrigeration stream. A first portion of the cooled natural gas may be expanded in a turbo-expander to generate the first refrigeration stream. A second portion of the cooled natural gas may be cooled in a second heat exchanger with the first refrigeration stream and expanded in an expansion valve to produce a two-phase fluid containing the LNG and a vapor phase. The LNG may be separated from the vapor phase in a liquid separator and stored in a storage tank.
Abstract:
Systems and methods for cooling one or more components of a gas turbine are provided. One system may include an expansion device and one or more conduits. The expansion device may be operatively coupled to the gas turbine and configured to convert a pressure drop of a stream of compressed process fluid to mechanical energy. The expansion device may be further configured to at least partially drive the gas turbine with the mechanical energy. The one or more conduits may fluidly couple the expansion device and the gas turbine. The one or more conduits may be configured to direct an expanded stream of the compressed process fluid to the one or more components of the gas turbine to cool the one or more components.
Abstract:
A pumped heat energy storage system is provided. The pumped heat energy storage system may include a charging assembly configured to compress a working fluid and generate thermal energy. The pumped heat energy storage system may also include a thermal storage assembly operably coupled with the charging assembly and configured to store the thermal energy generated from the charging assembly. The pumped heat energy storage system may further include a discharging assembly operably coupled with the thermal storage assembly and configured to extract the thermal energy from the thermal storage assembly and convert the thermal energy to electrical energy.
Abstract:
A pumped heat energy storage system is provided. The pumped heat energy storage system may include a charging assembly configured to compress a working fluid and generate thermal energy. The pumped heat energy storage system may also include a thermal storage assembly operably coupled with the charging assembly and configured to store the thermal energy generated from the charging assembly. The pumped heat energy storage system may further include a discharging assembly operably coupled with the thermal storage assembly and configured to extract the thermal energy from the thermal storage assembly and convert the thermal energy to electrical energy.
Abstract:
A method for operating a compressed air energy storage system is provided. The method can include compressing a process gas with a compressor train to produce a compressed process gas and storing the compressed process gas in a compressed gas storage unit. The method can also include extracting the compressed process gas from the compressed gas storage unit to an expansion assembly through a feed line. A valve assembly fluidly coupled to the feed line can be actuated to control a mass flow of the compressed process gas from the compressed gas storage unit to the expansion assembly. The method can further include heating the compressed process gas in a preheater fluidly coupled to the feed line upstream from the expansion assembly, and generating a power output with the expansion assembly.
Abstract:
A pumped heat energy storage system (11) is provided. A thermodynamic charging assembly (11′) may be configured to compress a working fluid and generate thermal energy. A thermal storage assembly (32) is coupled to charging assembly to store at atmospheric pressure by way of a conveyable bulk solid thermal storage media thermal energy generated by the charging assembly. A thermodynamic discharging assembly (11″) is coupled to the thermal storage assembly to extract thermal energy from the thermal storage assembly and convert extracted thermal energy to electrical energy. A heat exchanger assembly (34) is coupled to the thermal storage assembly. The heat exchanger assembly is arranged to directly thermally couple the conveyable bulk solid thermal storage media that is conveyed to the heat exchanger assembly with a flow of the working fluid that passes through the heat exchanger assembly. Disclosed embodiments can make use of immersed-particle heat exchanger technology and can offer similar roundtrip efficiency and pressure ratio characteristics comparable to those of a recuperated cycle without involving a recuperator and concomitant piping.