Abstract:
A system includes an exhaust system fluidly configured to define an exhaust stream. A sensor is arranged in the exhaust system and is configured to be exposed to the exhaust stream and accumulate particulate matter on the sensor. The sensor provides a signal that varies based upon an amount of particulate matter on the sensor. A control system is in communication with the sensor. The control system includes a controller configured to calculate a differential of a conductance signal related to the signal, compare consecutive differentials to identify an erroneous differential in an abnormal signal based upon an anomaly relating to the accumulation of the particulate matter, and reconstruct the abnormal signal by correcting the erroneous differential to produce a corrected, decimated conductance signal. The control system is configured to determine a total accumulated particulate matter adjusted for the anomaly.
Abstract:
A system for a multi-cylinder compression ignition engine includes a plurality of nozzles, at least one nozzle per cylinder, with each nozzle configured to spray oil onto the bottom side of a piston of the engine to cool that piston. Independent control of the oil spray from the nozzles is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the oil spray onto the piston in that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder engine, including determining a combustion parameter for combustion taking place in in a cylinder of the engine and controlling an oil spray targeted onto the bottom of a piston disposed in that cylinder is also presented.
Abstract:
A method of quantifying a particulate matter in an exhaust stream includes the steps of accumulating a particulate matter on a sensor. The sensor provides a signal that varies based upon an amount of the particulate on the sensor. The sensor includes a measurement cycle that includes a deadband zone, followed by an active zone, which is followed by a regeneration zone. The particulate matter is calculated after an end of the deadband zone is reached and prior to an end of the measurement cycle.