Abstract:
An electrical connector system having a male and female connector. The male connector includes a U-shaped shroud axially surrounding a male terminal having an opening generally perpendicular to the male terminal's longitudinal axis. The female connector includes a female terminal having two openings, one generally parallel with the female terminal's longitudinal axis and another generally perpendicular to that axis. The male and female terminals mate in a parallel configuration having the male terminal axis generally parallel to the female terminal axis or in a perpendicular configuration having the male terminal axis generally perpendicular to the female terminal axis. A connector body holds the female terminal. The connector body defines a locking means that releasably secures the connector body to the shroud in both the parallel and perpendicular mating configurations. The locking means may include a triangular shaped lock tab that engages a similarly shaped lock aperture.
Abstract:
A battery pack assembly has a plurality of interconnected battery cells and is suitable for use in an electric vehicle or a hybrid electric vehicle. The assembly includes a first battery cell having a first terminal and a second battery cell having a second terminal electrically interconnected by a bus bar formed of a conductive material and attached to the first terminal and the second terminal. A bus bar retainer formed of a dielectric material is configured to contain the bus bar within the bus bar retainer. The bus bar has a greater freedom of movement within the bus bar retainer along a first, e.g. vertical, axis than along a second, e.g. longitudinal, axis and a third, e.g. lateral axis, wherein both the second and third axes are substantially perpendicular to the first axis and to each other. The assembly may also include individually removable temperature sensing devices.
Abstract:
An electrical assembly, such as an electrical connector, is presented. The assembly includes a housing formed of a dielectric material using an additive manufacturing process such as stereolithography, digital light processing, fused deposition modeling, fused filament fabrication, selective laser sintering, selecting heat sintering, multi-jet modeling, multi-jet fusion, or 3D printing. The assembly further includes an electromagnetic shield integrally formed on a surface of the housing by a layer of conductive material deposited on the dielectric material by the additive manufacturing process. A method of manufacturing a housing configured to contain an electrical assembly is also presented. The method includes the steps of forming the housing from a dielectric material using an additive manufacturing process and integrally forming an electromagnetic shield on an external surface of the housing by depositing a layer of conductive material on the dielectric material during the additive manufacturing process.
Abstract:
A terminal assembly configured to terminate the shield of a shielded cable having an inner conductor, an inner insulator surrounding the inner conductor, an outer conductor forming a shield surrounding the inner insulator, and an outer insulator surrounding the outer conductor. The terminal assembly includes a generally cylindrical outer ferrule formed of a conductive material and a generally cylindrical inner ferrule formed of a resilient compressible dielectric material. At least a portion of the inner ferrule is disposed within the outer ferrule and a portion of the shielded cable is disposed within the inner ferrule. A portion of the outer conductor is disposed intermediate the inner and outer ferrules and is in intimate contact therewith.