Abstract:
An apparatus for providing near field communication (NFC) for a mobile device, includes a USB (universal serial bus) signal processing unit configured to convert a signal of the mobile device, which is received through a USB interface into a value to be processed in a central processing unit, and convert a value received from the central processing unit into a signal to be transmitted to the USB interface. Further, the apparatus includes an analog signal processing unit configured to convert an analog signal received from an outside device into a digital signal, and convert a digital signal of the central processing unit into an analog signal to transmit the converted analog signal to the antenna.
Abstract:
A mobile computing system for providing a high-security execution environment is provided. The mobile computing system separates execution environments in the same mobile device on the basis of virtualization technology and manages user-specific execution environments using the same hardware security module, thereby facilitating protection of personal privacy.
Abstract:
Disclosed herein are an apparatus and method for detecting a malicious device based on swarm intelligence. The method includes detecting a malicious device by causing at least one exploration ant to access a device swarm along movement routes in which pheromone trail values are taken into consideration, wherein the exploration ant is generated in response to a detection request received from a security management server, when the at least one exploration ant detects a suspicious device that is suspected to be a malicious device, causing the exploration ant to return along the movement routes in reverse order, and returning pheromone trail values generated by devices on the return movement routes to a malicious device detection apparatus, and identifying whether the suspicious device is the malicious device by calculating an optimal solution based on a local information set generated by aggregating the pheromone trail values returned for movement routes.
Abstract:
Disclosed herein is a device equipped with flash memory, which includes memory in which at least one program is recorded and a processor for executing the program. The memory includes flash memory including a data area and a backup area, and the program divides data into two or more segments depending on whether the data can be stored in a single page and stores the same in the data area. The first segment is stored in a page along with a segment number, indicating the sequential position of the divided data, a segment offset, indicating the number of pages between the pages in which the current segment and the next segment are stored, the size of a data file name, the size of the data, and the file name. At least one additional segment may be stored in another page along with the segment number and segment offset thereof.
Abstract:
Disclosed herein are a hardware security module, a device having the hardware security module, and a method for operating the device. The method for verifying integrity of executable code in a device includes dividing, by a Micro-Control Unit (MCU), executable code into multiple blocks, generating, by the MCU, hash values corresponding to the blocks resulting from the division, storing, by a Hardware Security Module (HSM), the generated hash values, calculating, by the MCU, at least one hash value, among hash values of the multiple blocks when the executable code boots, and comparing, by the HSM, the calculated hash value with a hash value corresponding to the calculated hash value, among the hash values stored in the HSM.
Abstract:
The present invention relates to an apparatus and a method for transferring a data signal between a smartcard interface and an interface of a processor within an embedded system.According to an exemplary embodiment of the present invention, an interface conversion device communicating between a processor and a smartcard IC chip includes: an input/output signal conversion logic configured to transfer a signal between a first interface of the processor and a second interface of the smartcard IC chip; a clock generator configured to generate a clock signal driving the smartcard IC chip depending on a first control signal received from the processor and provide the generated clock signal to the smartcard IC chip; and a reset controller configured to generate a reset signal depending on a second control signal received from the processor and provide the generated reset signal to the smartcard IC chip.
Abstract:
Disclosed herein are a universal subscriber identification module card and a communication method using the same. The universal subscriber identification module card includes a Universal Subscriber Identification Module (USIM) chip, a pad, and a security chip. The USIM chip performs the user authentication of a mobile terminal. The pad electrically connects the USIM chip to the mobile terminal when the USIM chip is inserted into the mobile terminal. The security chip performs a security function for the mobile terminal independently of the USIM chip and shares the two power terminals of the pad with the USIM chip.