Abstract:
Disclosed are an apparatus and a method for measuring a blood glucose level. In the blood glucose level measurement apparatus and method, the apparatus coupled to a patch with a microneedle formed in at least one area and configured to calculate a blood glucose level of a body fluid extracted from a user may calculate the blood glucose level by analyzing a reflected light beam reflected from the patch with a microneedle formed in a second area and correct the calculated blood glucose level of the user by analyzing data obtained by measuring a reflected light beam from a first area from which the body fluid is not extracted so as to measure a precise blood glucose level with an error being reduced in consideration of environmental factors influencing measurement.
Abstract:
A smoke detection apparatus based on multiple wavelengths is provided, which includes: a chamber configured to receive an inflow of a smoke; a detector including a light emitter having a plurality of light sources that radiate light having a plurality of different wavelengths into a space in the chamber, and a light receiver configured to receive scattered light by the plurality of light sources; and a controller configured to control an operation of the detector and to distinguish between fire smoke and non-fire quasi-smoke by detecting and analyzing a light receiving signal of the light receiver.
Abstract:
Provided herein is an infrared spectroscopy technique capable of performing spectroscopic analysis on infrared rays in a broad infrared range (including a near infrared range, a short infrared range, a mid-infrared range, a far infrared range, and an extreme infrared range). An apparatus and a method for spectroscopic analysis on infrared rays are provided, without using an image sensor having a limited response range, to generate a signal in which transmitted light for each wavelength passes through a plurality of filters having different transmittances for each wavelength and is spatially pattern-coded, restore the signal into an infrared transmittance image, discriminate a wavelength according to a transmittance of the filter from the infrared transmittance image, calculate an intensity of the light for each wavelength, and output infrared spectrum information.
Abstract:
Provided is a system for detecting flame, which includes a light collecting module configured to collect light emitted from flame and sense location information and intensity information of the collected light, a memory configured to store a program for determining fire information on the basis of the sensed location information and intensity information of the light, and a processor configured to calculate intensity information and fluttering information of the flame from the intensity information of the light by executing the program stored in the memory, to calculate centroid spatial distribution information of the flame from the location information of the light, and to detect whether there is flame on the basis of at least one of the intensity information of the flame, the fluttering information of the flame, and the centroid spatial distribution information.
Abstract:
Provided is an apparatus for detecting smoke based on polarization. The apparatus includes a chamber into which smoke is introduced, a detection unit comprising a light-emitting unit configured to emit light beams having a plurality of different wavelengths into a space in the chamber, and a light-receiving unit configured to receive scattered light from a plurality of light sources, a control unit configured to control an operation of the detection unit, and a fire determination unit configured to distinguish between fire smoke and non-fire analogous smoke by detecting and analyzing a light-receiving signal received by the light-receiving unit, in which horizontal polarization and vertical polarization are applied to the plurality of light sources of the light-emitting unit and the light-receiving unit.
Abstract:
In the invention, only light reflected by a portion in which a microneedle is disposed arrives on a photodetector, and light reflected by a portion in which the microneedle is not disposed does not arrive on the photodetector. Disclosed is a skin patch for measuring blood glucose including a patch including a skin attachment surface, a reaction layer which reacts with glycation products of skin, and a plurality of microneedles disposed on the skin attachment surface to guide the glycation products of the skin to the reaction layer and an optical trap which allows light, which is reflected by only one portion among a portion in which the microneedle is disposed and a portion in which the microneedle is not disposed when the light is emitted to the reaction layer, to pass therethrough, a method of manufacturing the same, and a blood glucose measuring apparatus using the same.
Abstract:
A tag of an apparatus for simultaneously identifying massive tags according to the present invention may include an analog circuit unit to communicate with a reader through an analog signal and to receive energy via magnetic coupling with the reader. Further, the tag may include a digital circuit unit to be supplied with power from the analog circuit unit. The digital circuit unit may support a sleep mode for the tag to stand by in a low power state after transmitting an identifier (ID) to the reader and a wait mode for controlling random access to the reader.