Abstract:
An apparatus and method for verifying broadcast content object identification based on web data. The apparatus includes: a web data processor configured to collect and process web data related to broadcast content and create content knowledge information by tagging the web data to the broadcast content; a content knowledge information storage portion configured to store the content knowledge information; and an object identification verifier configured to verify a result of identifying an object contained in the broadcast content, using the content knowledge information.
Abstract:
Provided is a system for detecting flame, which includes a light collecting module configured to collect light emitted from flame and sense location information and intensity information of the collected light, a memory configured to store a program for determining fire information on the basis of the sensed location information and intensity information of the light, and a processor configured to calculate intensity information and fluttering information of the flame from the intensity information of the light by executing the program stored in the memory, to calculate centroid spatial distribution information of the flame from the location information of the light, and to detect whether there is flame on the basis of at least one of the intensity information of the flame, the fluttering information of the flame, and the centroid spatial distribution information.
Abstract:
Provided are a fire detection apparatus and method for analyzing a spectral distribution of secondary light generated as primary light is scattered or transmitted through smoke particles to distinguish between fire smoke generated due to an actual fire and living smoke generated in daily life, thereby reducing non-fire alarms. When smoke enters the inside of the fire detection apparatus (100) due to a fire, secondary light (150) scattered or transmitted through smoke particles (140) is incident on the light receiver (120). Upon receiving the secondary light (150), the light receiver (120) outputs a spectrum (170) of the secondary light (150). The fire identification unit (160) receives and analyzes the spectrum (170) of the secondary light (150) and identifies whether the smoke particles (140) are particles of living smoke or particles of fire smoke.
Abstract:
Provided is an object detecting method and apparatus, the apparatus configured to extract a frame image and a motion vector from a video, generate an integrated feature vector based on the frame image and the motion vector, and detect an object included in the video based on the integrated feature vector.
Abstract:
The disclosure relates to a non-dispersive infrared (NDIR) gas sensor which detects the concentration of gas with a simple structure and method by manufacturing an optical waveguide with a gas-permeable polymer material instead of a conventional cavity or chamber type. An optical signal travels through the optical waveguide of gas-permeable polymer by total internal reflection, and the gas naturally penetrates the optical waveguide without the use of separate inlet and outlet openings, so that the optical signal and gas particles come into contact with each other within the optical waveguide. Since the optical signal detected by a photodetector at the other end of the optical waveguide after traveling while contacting the gas particles has properties changed according to the concentration of the gas which they have contacted in the optical waveguide, it is possible to measure the concentration of a specific gas from the detected optical signal.
Abstract:
Provided is an apparatus for detecting smoke based on polarization. The apparatus includes a chamber into which smoke is introduced, a detection unit comprising a light-emitting unit configured to emit light beams having a plurality of different wavelengths into a space in the chamber, and a light-receiving unit configured to receive scattered light from a plurality of light sources, a control unit configured to control an operation of the detection unit, and a fire determination unit configured to distinguish between fire smoke and non-fire analogous smoke by detecting and analyzing a light-receiving signal received by the light-receiving unit, in which horizontal polarization and vertical polarization are applied to the plurality of light sources of the light-emitting unit and the light-receiving unit.
Abstract:
A smoke detection apparatus based on multiple wavelengths is provided, which includes: a chamber configured to receive an inflow of a smoke; a detector including a light emitter having a plurality of light sources that radiate light having a plurality of different wavelengths into a space in the chamber, and a light receiver configured to receive scattered light by the plurality of light sources; and a controller configured to control an operation of the detector and to distinguish between fire smoke and non-fire quasi-smoke by detecting and analyzing a light receiving signal of the light receiver.
Abstract:
Provided herein is an infrared spectroscopy technique capable of performing spectroscopic analysis on infrared rays in a broad infrared range (including a near infrared range, a short infrared range, a mid-infrared range, a far infrared range, and an extreme infrared range). An apparatus and a method for spectroscopic analysis on infrared rays are provided, without using an image sensor having a limited response range, to generate a signal in which transmitted light for each wavelength passes through a plurality of filters having different transmittances for each wavelength and is spatially pattern-coded, restore the signal into an infrared transmittance image, discriminate a wavelength according to a transmittance of the filter from the infrared transmittance image, calculate an intensity of the light for each wavelength, and output infrared spectrum information.
Abstract:
Optical data is collected from an optical sensor of a dual wavelength, and in order to detect the fire from the collected optical data, an average value of a first wavelength, an average value of a second wavelength, and a ratio of the average values of the two wavelengths are calculated, and an amount of change of a slope of the ratio is used to detect the fire and determine the fire occurrence time. From the determined fire occurrence time, fire features are extracted from the optical data in real time according to defined rules to configure a data set. The data set may be used for learning and inference techniques to identify a fire or non-fire, a fire source, a combustion material, and the like.
Abstract:
An apparatus and method for recognizing an object using correlation information about an object and content-related information which is generated based on the content-related information. The apparatus includes a data classifier, a data analyzer, a correlation manager, and an object identifier.