Abstract:
A multipurpose chemical additives (MPC) is disclosed to mitigate fouling in hydrocarbon refinery processes, such as in a heat exchanger. A method for reducing fouling of a hydrocarbon is also disclosed that includes (i) providing a crude hydrocarbon for a refining process; and (ii) adding an additive to the crude hydrocarbon.
Abstract:
Sulfur-crosslinked olefins, particularly sulfur-crosslinked heavy hydrocarbon products having one or more sulfur-crosslinked olefin moieties, may undergo pyrolysis to form sulfur-doped porous carbon having high BET surface area values. Pyrolysis to form the sulfur-doped porous carbon may be particularly efficacious in the presence of a hydroxide base. BET surface areas up to 2000 m2/g or even higher may be obtained. Such sulfur-doped porous carbon may be prepared by combining a heavy hydrocarbon product with sulfur, heating to a first temperature state to form a liquefied reaction mixture containing a sulfur-crosslinked heavy hydrocarbon, homogeneously mixing a hydroxide base with the liquefied reaction mixture, and pyrolyzing the sulfur-crosslinked heavy hydrocarbon to form sulfur-doped porous carbon.
Abstract:
A compound useful for reducing fouling in a hydrocarbon refining process is provided. A method for preparing the compound includes functionalizing a polymer having a vinyl chain end to obtain a terminal group having one or more anhydride units, and reacting the anhydride units with a polyamine. Methods of using the compound and compositions thereof are also provided.
Abstract:
A compound useful for reducing fouling in a hydrocarbon refining process is provided. A method for preparing the compound includes functionalizing a polymer having a vinyl chain end to obtain a terminal group having one or more anhydride units, and reacting the anhydride units with a polyamine. Methods of using the compound and compositions thereof are also provided.