Abstract:
A lubricating oil including a lubricating oil base stock as a major component, and one or more lubricating oil additives having at least one protected active group, as a minor component. The one or more lubricating oil additives having at least one protected active group are converted into one or more lubricating oil additives having at least one unprotected active group in the lubricating oil in-service in an engine or other mechanical component. Compositions including one or more lubricating oil additives having at least one protected active group. A method for improving solubility of one or more lubricating oil additives in a lubricating oil. A method for improving oxidative stability of a lubricating oil and extending performance life of one or more lubricating oil additives. A method for improving friction control in an engine or other mechanical component lubricated with a lubricating oil.
Abstract:
A lubricating oil including a lubricating oil base stock as a major component; and a mixture of (i) one or more protected lubricating oil additives having a first performance function, and (ii) one or more unprotected lubricating oil additives having a second performance function, as a minor component. The first performance function and the second performance function are the same. The one or more protected lubricating oil additives are inactive with respect to their performance function. The one or more protected lubricating oil additives are converted into one or more unprotected lubricating oil additives in the lubricating oil in-service in an engine or other mechanical component. A method for controlled release of one or more lubricating oil additives into a lubricating oil. A method for improving oxidative stability of a lubricating oil and extending performance life of one or more lubricating oil additives.
Abstract:
This disclosure relates to a composition for use as an additive for fuels and lubricants including a reductive amination product of a vinyl terminated macromonomer (VTM) based aldehyde. Optionally aldehyde is reacted with the amino compound under condensation conditions sufficient to give an imine intermediate, and the imine intermediate is reacted under hydrogenation conditions sufficient to give the composition. The aldehyde is formed by reacting a VTM under hydroformylation conditions sufficient to form the aldehyde. A reductive amination method for making a composition for use as an additive for fuels and lubricants. The method includes reacting a VTM based aldehyde with an amino compound containing at least one —NH— group under condensation conditions sufficient to give an imine intermediate, and reacting the imine intermediate under hydrogenation conditions sufficient to give said composition. The aldehyde is formed by reacting a VTM under hydroformylation conditions sufficient to form the aldehyde.
Abstract:
A lubricating oil base stock including one or more monoesters represented by the formula (I), (II), (III) and (IV) as defined herein. The lubricating oil base stock has a high temperature high shear (HTHS) viscosity of less than about 1.7 cP as determined by ASTM D4683, and a Noack volatility from about 15 to about 90 percent as determined by ASTM D5800. A lubricating oil containing the lubricating oil base stock including one or more monoesters represented by the formula (I), (II), (III) and (IV) as defined herein. A method for improving one or more of thermal and oxidative stability, solubility and dispersancy of polar additives, deposit control and traction control in a lubricating oil by using as the lubricating oil a formulated oil containing the lubricating oil base stock including one or more monoesters represented by the formula (I), (II), (III) and (IV) as defined herein.
Abstract:
A lubricating oil including a lubricating oil base stock as a major component; and a mixture of (i) one or more protected lubricating oil additives having a first performance function, and (ii) one or more unprotected lubricating oil additives having a second performance function, as a minor component. The first performance function and the second performance function are the same. The one or more protected lubricating oil additives are inactive with respect to their performance function. The one or more protected lubricating oil additives are converted into one or more unprotected lubricating oil additives in the lubricating oil in-service in an engine or other mechanical component. A method for controlled release of one or more lubricating oil additives into a lubricating oil. A method for improving oxidative stability of a lubricating oil and extending performance life of one or more lubricating oil additives.
Abstract:
A composition including one or more aromatic alkanoate monoester compounds represented by the formulae (I) and (II) as defined herein. The composition has a viscosity (Kv100) from about 1 cSt to about 10 cSt at 100° C. as determined by ASTM D445, a viscosity index (VI) from about −100 to about 300 as determined by ASTM D2270, and a Noack volatility of no greater than 50 percent as determined by ASTM D5800. A process for producing the composition, a lubricating oil base stock and lubricating oil containing the composition, and a method for improving one or more of thermal and oxidative stability, solubility and dispersancy of polar additives, deposit control and traction control in a lubricating oil by using as the lubricating oil a formulated oil containing the composition.
Abstract:
A composition including one or more diester compounds represented by the formula as defined herein. The composition has a viscosity (Kv100) from about 1 cSt to about 10 cSt at 100° C. as determined by ASTM D445, a viscosity index (VI) from about −100 to about 300 as determined by ASTM D2270, and a Noack volatility of no greater than 50 percent as determined by ASTM D5800. A process for producing the composition, a lubricating oil base stock and lubricating oil containing the composition, and a method for improving one or more of thermal and oxidative stability, solubility and dispersancy of polar additives, deposit control and traction control in a lubricating oil by using as the lubricating oil a formulated oil containing the composition.
Abstract:
A lubricating oil including a lubricating oil base stock as a major component, and one or more lubricating oil additives having at least one protected active group, as a minor component. The one or more lubricating oil additives having at least one protected active group are converted into one or more lubricating oil additives having at least one unprotected active group in the lubricating oil in-service in an engine or other mechanical component. Compositions including one or more lubricating oil additives having at least one protected active group. A method for improving solubility of one or more lubricating oil additives in a lubricating oil. A method for improving oxidative stability of a lubricating oil and extending performance life of one or more lubricating oil additives. A method for improving friction control in an engine or other mechanical component lubricated with a lubricating oil.
Abstract:
A composition including one or more diester compounds represented by the formula as defined herein. The composition has a viscosity (Kv100) from about 1 cSt to about 10 cSt at 100° C. as determined by ASTM D445, a viscosity index (VI) from about −100 to about 300 as determined by ASTM D2270, and a Noack volatility of no greater than 50 percent as determined by ASTM D5800. A process for producing the composition, a lubricating oil base stock and lubricating oil containing the composition, and a method for improving one or more of thermal and oxidative stability, solubility and dispersancy of polar additives, deposit control and traction control in a lubricating oil by using as the lubricating oil a formulated oil containing the composition.
Abstract:
A method for improving wear control in an engine or other mechanical component lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition that includes a lubricating oil base stock as a major component; and at least one phosphazene represented by the formula as a minor component. In the above formula, Q is nitrogen, sulfur or oxygen; a is a value from about 2 to about 6, c is a value from about 2 to about 6, e is a value from about 2 to about 6, g is a value from about 2 to about 6, i is a value from about 2 to about 6, and k is a value from about 2 to about 6; b is a value of 2a+q, d is a value of 2c+r, f is a value of 2e+s, h is a value of 2g+t, j is a value of 2i+u, and l is a value of 2k+v; q, r, s, t, u and v are independently a value of 0 or −2; with the proviso that not all of a, c, e, g, i and k are the same value. A lubricating oil having a composition that includes a lubricating oil base stock as a major component; and at least one phosphazene represented by the above formula as a minor component. The lubricating oil is useful in internal combustion engines.