摘要:
A computing device configured to select a channel that is open in a local environment of the computing device and to attempt to communicate with another computing device on the selected available channel is described herein. The computing device selects the available channel based on selection probabilities for a plurality of available channels, the selection probabilities defined by an exponentially decaying distribution curve.
摘要:
A computing device configured to select a channel that is open in a local environment of the computing device and to attempt to communicate with another computing device on the selected available channel is described herein. The computing device selects the available channel based on selection probabilities for a plurality of available channels, the selection probabilities defined by an exponentially decaying distribution curve.
摘要:
Many computing scenarios involve an item cache or index, comprising items corresponding to source items that may change without notice, rendering the item in the item cache or index stale. It may not be possible to guarantee the freshness of the items, but it may be desirable to reduce staleness in an efficient manner. Therefore, the refreshing of items may be prioritized by first predicting the query frequency of respective item representing the rate at which an item is retrieved from the item cache (e.g., by monitoring queries for the item), predicting an update frequency representing the rate at which the source item is updated by the source item host (e.g., by classifying the source item type), and computing a refresh utility representing the improvement in cache freshness achieved by refreshing the item. Respective items may then be prioritized for refreshing according to the computed refresh utilities.
摘要:
Many computing scenarios involve an item cache or index, comprising items corresponding to source items that may change without notice, rendering the item in the item cache or index stale. It may not be possible to guarantee the freshness of the items, but it may be desirable to reduce staleness in an efficient manner. Therefore, the refreshing of items may be prioritized by first predicting the query frequency of respective item representing the rate at which an item is retrieved from the item cache (e.g., by monitoring queries for the item), predicting an update frequency representing the rate at which the source item is updated by the source item host (e.g., by classifying the source item type), and computing a refresh utility representing the improvement in cache freshness achieved by refreshing the item. Respective items may then be prioritized for refreshing according to the computed refresh utilities.
摘要:
A method of streaming data, comprising: receiving an input stream of data, at a transmitter; dividing the input stream into a plurality of blocks, at least one of which blocks is incomplete; generating a plurality of first packets based on at least one block of data; generating at least one second packet from at least one as yet incomplete block of data; said block comprising recently received data; transmitting said at least one first packet and at least one second packet to a receiver that can reconstruct said stream from said first packets and said second packets, said transmitting utilizing a differential protocol by which different parts of the data are transmitted at different rates, so that a receiver can join the transmission at any time and start receiving the data at a minimum delay; and generating at least one third packet from said at least one incomplete block; said at least one third packet being based at least in part on data received subsequent to data forming the basis for the at least one second packet; wherein said at least one second packet is transmitted at a higher rate than mandated by said protocol to compensate for a later repeated transmission of information carried in said at least one second packet at a lower rate than mandated by the protocol, once said at least one third packet is generated and transmitted.
摘要:
A tournament-style gaming scenario exploration system and method for interactively exploring current and future scenarios of a tournament and associated pick'em pool. The system and method include a prediction module (including a game constraint sub-module), and a key event detection module. Embodiments of the prediction module include a binary integer that represents tournament outcomes. The prediction module generates predictions of tournament outcomes using an exhaustive or a sampling technique. The sampling technique includes random sampling, where the tournament bracket is randomly sampled, and a weighted sampling technique, which sample portions of the tournament bracket more densely than others areas. Embodiments of the game constraint sub-module allow real-world results constraints and user-supplied constraints to be imposed on the tournament outcomes. Embodiments of the key event detection module identify key games in the tournament that affect a user's placement in the pick'em pool, a competitor's placement in the tournament standings, or both.
摘要:
A “Stochastic Clustering-Based Network Generator” enables rapid formation of an interconnected hierarchical network structure from an arbitrary number of agents via an iterative turn-based coalescence process. Given N agents wishing to coalesce into one hierarchical network, a turn-based process allows each agent (or the head of each hierarchical cluster of agents), to randomly decide whether to issue or listen for merge requests in each round. Issuing a request amounts to contacting a randomly chosen agent with a merge request. Given multiple received requests, a cluster head will randomly accept one request for a merge received by any agent in that cluster. The requesting cluster then merges as a hierarchical child of the accepting cluster. In a related embodiment, given multiple merge requests, the request from the smallest cluster is accepted. In further embodiments, ties of the smallest cluster size are broken based on various options.
摘要:
A “Stochastic Clustering-Based Network Generator” enables rapid formation of an interconnected hierarchical network structure from an arbitrary number of agents via an iterative turn-based coalescence process. Given N agents wishing to coalesce into one hierarchical network, a turn-based process allows each agent (or the head of each hierarchical cluster of agents), to randomly decide whether to issue or listen for merge requests in each round. Issuing a request amounts to contacting a randomly chosen agent with a merge request. Given multiple received requests, a cluster head will randomly accept one request for a merge received by any agent in that cluster. The requesting cluster then merges as a hierarchical child of the accepting cluster. In a related embodiment, given multiple merge requests, the request from the smallest cluster is accepted. In further embodiments, ties of the smallest cluster size are broken based on various options.