Abstract:
A light-emitting tube array display device includes a light-emitting tube array, a flexible sheet and a plurality of electrodes. The light-emitting tube array is constituted of a plurality of light-emitting tubes arranged in parallel. Each of the light-emitting tubes consists of narrow tube having a phosphor layer disposed and discharge gas filled inside. The flexible sheet is capable of flatly supporting the light-emitting tube array and deforming the light emitting tube array in a direction perpendicular to a longitudinal direction of the light-emitting tubes. The plurality of electrodes are formed on a face of the flexible sheet opposed to the light-emitting tubes, which are capable of generating discharge inside the light-emitting tubes by an application of voltage. Each of the electrodes is formed of a metal film having a mesh pattern, a ladder pattern, or a comb-shape pattern.
Abstract:
A display device includes a plurality of emitting tubes constituted by elongated tubes each having a phosphor layer disposed and a discharge gas enclosed inside, a supporter for supporting the plurality of emitting tubes while making contact therewith, and a plurality of electrodes disposed on a surface of the supporter facing the emitting tubes for generation of electric discharges within the emitting tubes. The supporter has a connecting portion at an edge. The connecting portion of the supporter is detachably connected to a connector for applying a voltage to the plurality of electrodes.
Abstract:
A flat elliptic thin glass tube for a discharge tube is produced by the following steps: (a) a cylindrical glass tube is hermetically sealed; (b) the cylindrical glass tube is heated and deformed in a mold by an increased internal pressure of the glass tube caused by the heating of the glass tube to form a flat elliptic glass tube, the mold having means for defining at least the minor axis of the flat elliptic glass tube; and (c) the flat elliptic glass tube is heated and drawn to form the flat elliptic thin glass tube.
Abstract:
A method of forming a phosphor layer of a gas discharge tube provided with the phosphor layer on an internal surface of an elongated tubular vessel forming a discharge space. The method includes the steps of introducing a slurry of phosphor powder and a binding resin dispersed in a medium into the tubular vessel, holding the tubular vessel sideways to deposit the phosphor powder and the binding resin in the tubular vessel, and removing the medium from the tubular vessel, thereby forming a phosphor layer on one side of the internal surface of the tubular vessel.
Abstract:
A gas discharge tube has a phosphor layer formed and a discharge gas enclosed within an elongated tube which is to serve as the gas discharge tube. The gas discharge tube includes a light-emitting section and a cleaning section for cleaning the discharge gas. The cleaning section is connected to the light-emitting section.
Abstract:
A display device is provided in which a structure of a display tube is simplified so as to achieve a cost reduction and electric connection to a driving circuit is made easy. In the display device including a group of display tubes arranged in parallel for emitting light by gas discharge, plural transparent auxiliary electrodes for display are arranged in the length direction on the outer surface of the tubular vessel that defines a discharge gas space of each of the display tubes, so that the position of a discharge portion is determined. The auxiliary electrodes at the same position in the length direction of the vessel are connected to one another electrically via a band-like power supplying conductor provided on a front substrate, and a back substrate is arranged on which a band-like conductor is provided along each of the display tubes at the back side of the group of display tubes.
Abstract:
An AC-type gas discharge display includes a base, discharge tubes which are arranged on the base in parallel to each other and which contain fluorescent phosphors, data electrodes formed on the external surfaces of the discharge tubes such that the data electrodes extend in the longitudinal direction of the discharge tubes, and display electrodes formed in pairs on the external surfaces of the discharge tubes at the opposite side of the data electrodes such that the display electrodes intersect the discharge tubes. Each of the discharge tubes has a flattened elliptical shape in cross-section thereof and includes a pair of flat portions. The data electrodes are formed on one of the flat portions and scanning electrodes and common electrodes are alternately arranged on the other one of the flat portions, and the discharge tubes are supported by the base at one or the other one of the flat portions.
Abstract:
A display device includes elongated display tubes each of which has a discharge gas filled and a phosphor layer formed in the tube; a flexible sheet; a plurality of electrodes; and an adhesive layer. Each of the tubes is flat elliptical in cross section and has a plane section. The flexible sheet abuts against the plane sections of the tubes to support the tubes. The plurality of electrodes are arranged on the tubes abutting surface of the flexible sheet, for applying a voltage to the tubes to generate discharges within the tubes. The adhesive layer is disposed on the tubes abutting surface of the flexible sheet to bond the flexible sheet to the plane sections of the tubes so that the electrodes of the flexible sheet face the plane sections when the flexible sheet abuts against the plane sections of the tubes.
Abstract:
A display tube is provided that can improve light emission efficiency without raising a breakdown voltage. The display tube has a tubular vessel defining a discharge gas space and a pair of display electrodes for generating surface discharge along the circumferential surface of the vessel and opposing discharge traversing the inside of the vessel.
Abstract:
A light-emitting tube array display device includes a light-emitting tube array constituted of a plurality of light-emitting tubes arranged in parallel with discharge gas filled therein, a light-transmitting supporter abutting the display surface side of the light-emitting tube array for supporting the light-emitting tube array and having electrodes formed on its surface facing the light-emitting tube array for applying a voltage to the light-emitting tubes, and a light-transmitting adhesive layer formed between the supporter and the light-emitting tube array. The adhesive layer has a refractive index equal to or higher than that of a tube body of the light-emitting tube and the supporter has a refractive index equal to or higher than that of the adhesive layer.