Abstract:
An apparatus is described herein. The apparatus comprises a first modality unit and a second modality unit. The first modality unit is located within a gantry. The second modality unit within the gantry is moveable along an examination axis to be concentric about with the first modality unit such that a field of view of the first modality unit and a field of view of the second modality unit are centered about a single point of interest.
Abstract:
Methods and systems are provided for cooling systems for imaging systems. In one embodiment, a manifold assembly for an imaging system comprises: an intake manifold and a return manifold formed by a plurality of unitary sections, the intake manifold and return manifold positioned adjacent to each other and separated by a shared wall; and a plurality of nozzles, with each nozzle of the plurality of nozzles formed by a corresponding section of the plurality of unitary sections. In this way, an assembly difficulty, expense, and/or manufacturing time of the manifold assembly may be decreased.
Abstract:
A positron emission tomography (PET) detector assembly is provided. The PET detector assembly includes a plate having a first side and an opposite second side, the plate being fabricated from a thermally conductive material. The PET detector assembly also includes multiple PET detector units coupled to the first side of the plate. The PET detector assembly further includes a readout electronics section coupled to the second side of the plate, wherein, during operation, the readout electronics section generates heat that is transferred to the plate. The plate comprises a heat pipe disposed within the plate and configured to extract the heat from the plate and to transfer the heat away from the plate.
Abstract:
A positron emission tomography (PET) detector assembly is provided. The PET detector assembly includes a plate having a first side and an opposite second side, the plate being fabricated from a thermally conductive material. The PET detector assembly also includes multiple PET detector units coupled to the first side of the plate. The PET detector assembly further includes a readout electronics section coupled to the second side of the plate, wherein, during operation, the readout electronics section generates heat that is transferred to the plate. The plate comprises a heat pipe disposed within the plate and configured to extract the heat from the plate and to transfer the heat away from the plate.
Abstract:
A system and method for reducing vibration of a cantilevered patient support surface are provided herein. A system includes a spring and roller coupled with the spring. The spring creates an upwards spring bias on the patient support surface. The roller is coupled with the spring via a roller lever arm. A frictional resistance at the roller arm and an upward directed spring bias enables the roller to maintain constant contact with the patient support surface.
Abstract:
A system and method for reducing vibration of a cantilevered patient support surface are provided herein. A system includes a spring and roller coupled with the spring. The spring creates an upwards spring bias on the patient support surface. The roller is coupled with the spring via a roller lever arm. A frictional resistance at the roller arm and an upward directed spring bias enables the roller to maintain constant contact with the patient support surface.
Abstract:
The present disclosure relates to correcting misalignment of image data within an overlap region in acquired scan data. By way of example, systems and methods for applying a post-reconstruction interpolation are described to correct mis-registration of features within overlap regions in either sequentially acquired axial scans or single scan acquisitions.
Abstract:
An apparatus is described herein. The apparatus comprises a first modality unit and a second modality unit. The first modality unit is located within a gantry. The second modality unit within the gantry is moveable along an examination axis to be concentric about with the first modality unit such that a field of view of the first modality unit and a field of view of the second modality unit are centered about a single point of interest.
Abstract:
A patient support system is provided. The patient support system includes a support table including a first end and a second end. The patient support system also includes a patient support coupled to the support table and configured to support a subject during an imaging procedure, wherein a top surface of the patient support is angled relative to a bottom surface of the patient support to position a portion of the subject to be imaged to be orthogonal to an imaging scan plane while the patient support is extended from the second end.
Abstract:
A system and method for reducing vibration of a cantilevered patient support surface are provided herein. A system includes a spring and roller coupled with the spring. The spring creates an upwards spring bias on the patient support surface. The roller is coupled with the spring via a roller lever arm. A frictional resistance at the roller arm and an upward directed spring bias enables the roller to maintain constant contact with the patient support surface.