Abstract:
A method includes receiving field measurement data of a plurality of well-pumps disposed respectively in a plurality of wells. The field measurement data are representative of speed data and run-time data of the plurality of well-pumps. The method further includes receiving commingled-flow measurement data. The commingled-flow measurement data are representative of a combined fluid flow data of the plurality of wells. The method further includes determining, by an optimizer unit, well-flow data of the plurality of wells based on the commingled-flow measurement data, the field measurement data, and a plurality of conservation constraints generated by a constraint generator. The well-flow data are representative of fluid flow data from each of the plurality of wells. The method also includes controlling operation of at least one of the plurality of well-pumps based on the well-flow data to control fluid production from the plurality of wells.
Abstract:
An ultrasonic sensor assembly for testing a pipe includes a first and second transducer rings attached to the pipe and spaced apart along a length of the pipe. The first transducer ring includes a plurality of transmitters for transmitting a wave, such as a non-dispersive guided wave. The first transducer ring transmits the wave along the pipe. The second transducer ring includes a plurality of receivers for receiving the wave. A relative position of the first transducer ring with respect to a circumferential position of the second transducer ring is determined based on characteristics of the wave received by the second transducer ring. A method of positioning the ultrasonic sensor assembly on the pipe is also provided.
Abstract:
An ultrasonic sensor assembly for testing a pipe includes a first and second transducer rings attached to the pipe and spaced apart along a length of the pipe. The first transducer ring includes a plurality of transmitters for transmitting a wave, such as a non-dispersive guided wave. The first transducer ring transmits the wave along the pipe. The second transducer ring includes a plurality of receivers for receiving the wave. A relative position of the first transducer ring with respect to a circumferential position of the second transducer ring is determined based on characteristics of the wave received by the second transducer ring. A method of positioning the ultrasonic sensor assembly on the pipe is also provided.
Abstract:
An ultrasonic sensor assembly for testing a pipe includes a first and second transducer rings attached to the pipe and spaced apart along a length of the pipe. The first transducer ring includes a plurality of transmitters for transmitting a wave, such as a non-dispersive guided wave. The first transducer ring transmits the wave along the pipe. The second transducer ring includes a plurality of receivers for receiving the wave. A relative position of the first transducer ring with respect to a circumferential position of the second transducer ring is determined based on characteristics of the wave received by the second transducer ring. A method of positioning the ultrasonic sensor assembly on the pipe is also provided.
Abstract:
The ultrasonic sensor assembly is provided. The assembly includes a first and second flexible sets of transducers wrapped and permanently attached to the pipe at first and second locations, respectively. Each set of transducers includes at least transducers arranged in a row. The first set of transducers is configured to transmit a wave along the pipe. The second set of transducers is configured to receive the wave transmitted along the pipe. The ultrasonic sensor assembly includes a controller operatively connected to the second set of transducers for receiving information about the wave received by the second set of transducers. The controller is configured to analyze the information about the wave received by the second set of transducers to determine the presence of possible defects in the pipe. An associated method is also provided.
Abstract:
An ultrasonic sensor assembly for testing a pipe includes a first and second transducer rings attached to the pipe and spaced apart along a length of the pipe. The first transducer ring includes a plurality of transmitters for transmitting a wave, such as a non-dispersive guided wave. The first transducer ring transmits the wave along the pipe. The second transducer ring includes a plurality of receivers for receiving the wave. A relative position of the first transducer ring with respect to a circumferential position of the second transducer ring is determined based on characteristics of the wave received by the second transducer ring. A method of positioning the ultrasonic sensor assembly on the pipe is also provided.