Abstract:
A combustor includes an end cover and at least one fuel nozzle extending from the end cover and at least partially surrounded by a combustion liner. The combustor further includes an outer sleeve spaced apart from and surrounding the combustion liner such that an annulus is defined therebetween. The combustor further includes a fuel injection assembly. The fuel injection assembly includes a fuel injector that extends through the outer sleeve, the annulus, and the combustion liner to the secondary combustion zone. A fuel supply conduit positioned outside of the outer sleeve. The fuel supply conduit extending to the fuel injector. A shielding assembly coupled to the outer sleeve and at least partially surrounding the fuel supply conduit. The at least one fuel sweep opening is defined in the outer sleeve and disposed within the shielding assembly.
Abstract:
A fuel injector is provided for the radial introduction of a fuel/air mixture to a combustor. The fuel injector includes a frame having interior sides defining an opening for passage of a first fluid; at least one fuel injection body; and a conduit fitting. The at least one fuel injection body is coupled to the frame and positioned within the opening, thereby defining flow paths for the first fluid. The at least one fuel injection body defines a fuel plenum, and a set of fuel injection holes are defined through an outer surface of the at least one fuel injection body. The conduit fitting is coupled to the frame and conveys fuel from a fuel supply line to the fuel plenum. Fuel and the first fluid mix in the flow paths and are delivered through the outlet to the combustor.
Abstract:
A combustion module for a combustor of a gas turbine includes an annular fuel distribution manifold disposed at an upstream end of the combustion module. The fuel distribution manifold includes an annular support sleeve having an inner surface. The combustion module further includes a fuel injection assembly having an annular combustion liner that extends downstream from the fuel distribution manifold and that terminates at an aft frame, and an annular flow sleeve that circumferentially surrounds the combustion liner. The flow sleeve extends downstream from the fuel distribution manifold and terminates at the aft frame. The flow sleeve extends continuously between the support sleeve and the aft frame. A forward portion of the flow sleeve is positioned concentrically within the support sleeve where the forward portion is slidingly engaged with the inner surface of the support sleeve.
Abstract:
A crossfire tube assembly between adjacent combustors includes a first sleeve adapted to provide fluid communication from a first combustor and a second sleeve adapted to connect to provide fluid communication from a second combustor. The second sleeve extends at least partially inside the first sleeve. A bias is between the first and second sleeves.
Abstract:
Turbine systems are provided. A turbine system includes a transition duct comprising an inlet, an outlet, and a duct passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The duct passage includes an upstream portion and a downstream portion. The upstream portion extends from the inlet between an inlet end and an aft end. The downstream portion extends from the outlet between an outlet end and a head end. The turbine system further includes a joint coupling the aft end of the upstream portion and the head end of the downstream portion together. The joint is configured to allow movement of the upstream portion and the downstream portion relative to each other about or along at least one axis.
Abstract:
A fuel injector is provided for the radial introduction of a liquid fuel/air mixture to a combustor. The fuel injector includes a body having a frame that defines an inlet portion and an outlet member that defines an outlet portion. A fuel plenum is defined within the outlet member, and a fuel injection port, which communicates with the fuel plenum, is defined through the outlet member. A fuel supply conduit, fixed to the body, communicates between a source of liquid fuel and the fuel injection port, via the fuel plenum. Alternately, the fuel injector may include a swirl-inducing device mounted to the outlet member in communication with the fuel injection port, and a fuel supply conduit fixed to the swirl-inducing device. In this embodiment, the fuel supply conduit communicates between the fuel injection port and a source of a liquid fuel and water mixture, via the swirl-inducing device.
Abstract:
A combustion module for a combustor of a gas turbine includes an annular fuel distribution manifold disposed at an upstream end of the combustion module. The fuel distribution manifold includes an annular support sleeve having an inner surface. The combustion module further includes a fuel injection assembly having an annular combustion liner that extends downstream from the fuel distribution manifold and that terminates at an aft frame, and an annular flow sleeve that circumferentially surrounds the combustion liner. The flow sleeve extends downstream from the fuel distribution manifold and terminates at the aft frame. The flow sleeve extends continuously between the support sleeve and the aft frame. A forward portion of the flow sleeve is positioned concentrically within the support sleeve where the forward portion is slidingly engaged with the inner surface of the support sleeve.
Abstract:
A fuel injector for a gas turbine combustor includes side wall fuel injection bodies extending between opposite end walls. Each side wall fuel injection body defines a fuel plenum and includes an outer surface defining fuel injection ports in communication with the fuel plenum. One or more fuel injection bodies extending between the end walls are positioned between the side wall fuel injection bodies. Each fuel injection body defines a fuel plenum and includes an outer surface defining fuel injection ports in fluid communication with the fuel plenum. A conduit fitting coupled to the frame is fluidly connected to the respective fuel plenums. The fuel injection ports fluidly communicate with air flow paths defined between the fuel injection bodies and the side wall fuel injection bodies. A combustor for a gas turbine includes a liner and an axial fuel staging system with the present fuel injector.
Abstract:
A fuel supply system for a gas turbine combustor includes a fuel distribution manifold. A first fuel circuit extends from the fuel distribution manifold in a first circumferential direction around an outer surface of the outer casing and provides for fluid communication from the fuel distribution manifold, through the outer casing and to at least one fuel injector disposed within the outer casing. A second fuel circuit extends from the fuel distribution manifold in a second circumferential direction around the outer surface of the outer casing. The second fuel circuit provides for fluid communication from the fuel distribution manifold, through the outer casing and to at least one fuel injector within the outer casing. In particular configurations, the fuel supply system includes a shield that surrounds at least a portion of the outer casing and at least partially encases the first fuel circuit and the second fuel circuit.
Abstract:
A crossfire tube assembly between adjacent combustors includes a first sleeve adapted to provide fluid communication from a first combustor and a second sleeve adapted to connect to provide fluid communication from a second combustor. The second sleeve extends at least partially inside the first sleeve. A bias is between the first and second sleeves.