Abstract:
A bundled tube fuel nozzle includes a forward plate, a first intermediate plate and an outer sleeve defining a fuel plenum, a second intermediate plate axially spaced from the first intermediate plate where the first intermediate plate, the second intermediate plate and the outer sleeve define a purge air plenum, an aft plate axially spaced from the second intermediate plate where the second intermediate plate, the aft plate and the outer sleeve define a cooling air plenum and an annular wall that extends from the second intermediate plate to the aft plate. The annular wall defines a cooling flow channel within the bundled tube fuel nozzle. A plurality of apertures is defined proximate to a cool side of the aft plate and provide for fluid communication between the cooling flow channel and the cooling air plenum.
Abstract:
A system includes a multi-tube fuel nozzle. The multi-tube fuel nozzle includes multiple fuel injectors. Each fuel injector is configured to extend into a respective premixing tube of a plurality of mixing tubes. Each fuel injector includes a body, a fuel passage, and multiple fuel ports. The fuel passage is disposed within the body and extends in a longitudinal direction within a portion of the body. The multiple fuel ports are disposed along the portion of the body and coupled to the fuel passage. A space is disposed between the portion of the body with the fuel ports and the respective premixing tube.
Abstract:
A trapped vortex fuel injector includes a main body having an annular portion and a semi-annular portion coaxially aligned with the annular portion. The semi-annular portion extends downstream from the annular portion. An inner wall and an opposing outer wall of the main body extend between the annular and semi-annular portions. The annular portion at least partially defines a combustion air flow passage through the trapped vortex fuel injector. The semi-annular portion defines a trapped vortex pre-mix zone downstream from the combustion air flow passage. The main body further defines a fuel circuit that is fully circumscribed within the main body and that extends between the annular portion and the semi-annular portion. A plurality of fuel injection ports provide for fluid communication between the fuel circuit and the trapped vortex pre-mix zone. The main body may be fabricated using an additive manufacturing process.
Abstract:
A wake reducing structure includes a combustor liner having an inner surface and an outer surface, the inner surface defining a combustor chamber. Also included is an airflow path located along the outer surface of the combustor liner. Further included is a wake generating component disposed in the airflow path and proximate the combustor liner, wherein the wake generating component generates a wake region located downstream of the wake generating component. Yet further included is a wake generating component boss operatively coupled to the combustor liner and disposed within a combustor liner aperture. Also included is a cooling channel extending through the wake generating component boss, the cooling channel having an air inlet on an upstream region of the wake generating component boss and an air outlet on a downstream region of the wake generating component boss, the cooling channel configured to supply air to the wake region.
Abstract:
A combustor cap assembly includes an annular shroud and an impingement plate coupled to the shroud. The impingement plate at least partially defines a plurality of impingement cooling holes and a cooling flow return passage. A cap plate is coupled to the impingement plate. The cap plate includes an impingement side which faces a second side portion of the impingement plate where the impingement side is axially spaced from the second side portion to define an impingement air plenum therebetween. The cooling flow return passage is in fluid communication with the impingement air plenum. A fluid conduit extends from a first side portion of the impingement plate towards a first end portion of the shroud. The fluid conduit is in fluid communication with the cooling flow return passage and provides for fluid communication out of the impingement air plenum.
Abstract:
A late lean injection combustor assembly may include a first interior in which a first fuel supplied thereto is combustible, a flow sleeve annulus including a second interior in which a second fuel supplied thereto is combustible, at least one fuel injector disposed about the second interior, and at least one elongate premixing conduit disposed about the flow sleeve annulus and in fluid communication with the at least one fuel injector. The at least one elongate premixing conduit may be in fluid communication with a compressor discharge air and the second fuel such that the compressor discharge air and the second fuel are premixed within the elongate premixing conduit before entering the second interior by way of the at least one fuel injector.
Abstract:
An igniter tip for a combustion system is provided. The igniter tip may include a central electrode; an insulator sleeve about the central electrode; and an outer electrode about the insulator sleeve, the outer electrode including a tubular wall having a cooling passage extending within the tubular wall, the cooling passage including an entrance opening and an exit opening to an exterior of the outer electrode. A combustion system may include the igniter tip.
Abstract:
A gas turbine comprises a compressor discharge casing that is coupled to an outer turbine shell. The compressor discharge casing includes a combustor opening that extends through the compressor discharge casing and an outer mating surface that circumferentially surrounds the combustor opening. The outer turbine shell defines an inner mating surface. A combustion module extends through the combustor opening. The combustion module includes a forward end that is circumferentially surrounded by a mounting flange and an aft end that is circumferentially surrounded by an aft frame. The mounting flange extends circumferentially around the combustor opening. The mounting flange is coupled to the outer mating surface of the compressor discharge casing and the aft frame is coupled to the inner mating surface of the outer turbine shell.
Abstract:
A system for controlling air flow rate of a compressed working fluid to a fuel injector of a combustor includes an outer casing that defines a high pressure plenum around a portion of the combustor, an extraction port in fluid communication with the high pressure plenum and an inlet port. The combustor includes a plurality of fuel injectors arranged around a combustion liner, an inner flow sleeve, an outer air shield that surrounds the plurality of fuel injectors and the inner flow sleeve. The outer air shield defines an injection an air plenum between the outer air shield and the inner flow sleeve and an inlet to the injection air plenum. An external fluid circuit provides fluid communication between the extraction port and the inlet port. A baffle extends between the outer casing and the outer air shield to provide flow separation between the inlet and the high pressure plenum.
Abstract:
An igniter tip for a combustion system is provided. The igniter tip may include a central electrode; an insulator sleeve about the central electrode; and an outer electrode about the insulator sleeve, the outer electrode including a tubular wall having a cooling passage extending within the tubular wall, the cooling passage including an entrance opening and an exit opening to an exterior of the outer electrode. A combustion system may include the igniter tip.