Abstract:
A system and method for searching for and finding data across industrial time-series data is disclosed. A computer system receives a search query from a client system. The computer system accesses a database including a plurality of stored time-series data sets. For each stored time-series data set, the computer system determines whether the stored time-series data set includes one or more sections that match the received search query. In accordance with a determination that two or more of stored time-series data sets include at least one section that matches the received search query, the computer system determines whether the matching sections in each stored time-series data set have overlapping time periods. In accordance with a determination that the matching sections in each time-series data set have overlapping time periods, the computer system identifies a particular event that occurred during the overlapping time periods.
Abstract:
Embodiments allow blocking and featurization of time-series data gathered from at least one sensor. The input time-series data is divided into blocks with common attributes (features) according to feature models that describe patterns in the data. The blocks may be overlapping or non-overlapping. The resultant feature blocks are annotated with feature information and semantic meaning. The feature blocks can be indexed to facilitate semantic search of the data. Feature blocks may be further analyzed to create semantic blocks that incorporate semantic meaning and features for multiple feature blocks, sensors and/or related time-series data. The semantic blocks can also be indexed to facilitate semantic search of the data.
Abstract:
Examples relate to systems for authoring and executing predictive models. A computer system includes a model development context analyzer configured to store a set of derived modeling knowledge generated at least in part from a plurality of modeling operations performed using at least a first predictive model authoring tool. The system is configured to, receive a modeling context indicating at least a modeling operation being performed, determine, from the modeling context, at least one element of an ontology, the ontology defining at least one attribute of a plurality of modeling operations, query the set of derived modeling knowledge using the at least one element of the ontology to identify at least one record of the set of derived modeling knowledge associated with the at least one element of the ontology, identify at least one suggested model parameter associated with the modeling context, and provide the at least one suggested model parameter.
Abstract:
Some embodiments are directed to systems for authoring predictive models. An embodiment includes a computer system implementing a development environment for generating predictive models. The predictive model authoring tool is configured to perform a modeling operation based on one or more user inputs provided to interface controls of the predictive model authoring tool, determine a modeling context for the modeling operation, log the one or more user inputs, generate a predictive model based on one or more model parameters defined during the modeling operation, link the predictive model to an asset, such that one or more sets of data received from the asset are provided to the predictive model during execution of the predictive model, cause the predictive model to be executed such that the predictive model receives data from the asset, and provide the modeling context, the one or more user inputs, and the one or more model parameters.
Abstract:
According to some embodiments, an influencer analyzer platform may access a document database storing documents associated with various social and traditional media sources, each document being associated with an author. A first influencer score may be calculated for a selected author based on a first algorithm and the documents in the document database. Similarly, a second influencer score may be calculated for the selected author based on a second algorithm, different than the first algorithm, and the documents in the document database. An overall influencer score may then be calculated based on the first influencer score adjusted by a first weighing value and the second influencer score adjusted by a second weighing value.
Abstract:
The present disclosure relates to the use of both semantic analysis and statistical text mining to process data records, improving the completeness and accuracy of records so processed. By way of example, a data record may be iteratively processed by text mining using seeds derived from a semantic template and by validating the results based on semantic reasoning based on the semantic template.
Abstract:
Systems, apparatus, and methods for referring physicians based on hierarchical disease profile matching are disclosed. An example system includes a data store to include a plurality of disease profiles, each disease profile associated with a patient condition, a user interface to accept a user request for a referral of a patient to a physician, and a referral processor to compare a profile associated with the patient including a patient symptom to the plurality of disease profiles to generate one or more physician recommendations for referral, the referral processor to refine the one or more physician recommendations based on one or more characteristics associated with each of the one or more physician recommendations, the referral processor to provide the refined one or more physician recommendations to a user for review and selection via the user interface.
Abstract:
Some embodiments are directed to systems for authoring predictive models. An embodiment includes a computer system implementing a development environment for generating predictive models. The predictive model authoring tool is configured to perform a modeling operation based on one or more user inputs provided to interface controls of the predictive model authoring tool, determine a modeling context for the modeling operation, log the one or more user inputs, generate a predictive model based on one or more model parameters defined during the modeling operation, link the predictive model to an asset, such that one or more sets of data received from the asset are provided to the predictive model during execution of the predictive model, cause the predictive model to be executed such that the predictive model receives data from the asset, and provide the modeling context, the one or more user inputs, and the one or more model parameters.
Abstract:
A system and method for searching for and finding data across industrial time-series data is disclosed. A computer system receives a search query from a client system. The computer system accesses a database including a plurality of stored time-series data sets. For each stored time-series data set, the computer system determines whether the stored time-series data set includes one or more sections that match the received search query. In accordance with a determination that two or more of stored time-series data sets include at least one section that matches the received search query, the computer system determines whether the matching sections in each stored time-series data set have overlapping time periods. In accordance with a determination that the matching sections in each time-series data set have overlapping time periods, the computer system identifies a particular event that occurred during the overlapping time periods.
Abstract:
Examples relate to systems for authoring and executing predictive models. A computer system includes a model development context analyzer configured to store a set of derived modeling knowledge generated at least in part from a plurality of modeling operations performed using at least a first predictive model authoring tool. The system is configured to, receive a modeling context indicating at least a modeling operation being performed, determine, from the modeling context, at least one element of an ontology, the ontology defining at least one attribute of a plurality of modeling operations, query the set of derived modeling knowledge using the at least one element of the ontology to identify at least one record of the set of derived modeling knowledge associated with the at least one element of the ontology, identify at least one suggested model parameter associated with the modeling context, and provide the at least one suggested model parameter.