Abstract:
An electromagnetic braking system includes an electrically conductive disc coupled to a rotatable shaft of a power generation system for operating in an island mode. The rotatable shaft is operatively coupled between a prime mover and a generator for supplying power to an island grid. The electromagnetic braking system further includes a controller for receiving at least one status or synchronization signal and for generating a control signal based on the at least one signal and an inducting unit for applying an electromagnetic braking force on the electrically conductive disc when commanded by the control signal to regulate a rotational speed of the rotatable shaft.
Abstract:
An electromagnetic braking system includes an electrically conductive disc coupled to a rotatable shaft of a power generation system for operating in an island mode. The rotatable shaft is operatively coupled between a prime mover and a generator for supplying power to an island grid. The electromagnetic braking system further includes a controller for receiving at least one status or synchronization signal and for generating a control signal based on the at least one signal and an inducting unit for applying an electromagnetic braking force on the electrically conductive disc when commanded by the control signal to regulate a rotational speed of the rotatable shaft.
Abstract:
A braking system includes a converter, a capacitor coupled to an output of the converter, a bridge coupled in parallel to the capacitor, and at least one inductor coupled to the bridge, an electrically conductive disc disposed proximate to the at least one inductor, and a switching unit controller for commanding the converter to convert a level of voltage supplied therefrom from a first voltage level to a second voltage level and thereby increase energy stored in the capacitor, and, upon receiving a brake command, commanding the bridge to ramp-up electrical current in the at least one inductor so as to induce an electromagnetic force on the electrically conductive disc.
Abstract:
A shielded direct current link (“DC link”) busbar includes a central planar element that includes a first surface and a second surface axially opposed to the first surface. The shielded DC link busbar further includes a first conductive lamina disposed over the first surface and a second conductive lamina disposed over the second surface. Further, the first conductive lamina and the second conductive lamina are electrically coupled.
Abstract:
A braking system includes a converter, a capacitor coupled to an output of the converter, a bridge coupled in parallel to the capacitor, and at least one inductor coupled to the bridge, an electrically conductive disc disposed proximate to the at least one inductor, and a switching unit controller for commanding the converter to convert a level of voltage supplied therefrom from a first voltage level to a second voltage level and thereby increase energy stored in the capacitor, and, upon receiving a brake command, commanding the bridge to ramp-up electrical current in the at least one inductor so as to induce an electromagnetic force on the electrically conductive disc.
Abstract:
A shielded direct current link (“DC link”) busbar includes a central planar element that includes a first surface and a second surface axially opposed to the first surface. The shielded DC link busbar further includes a first conductive lamina disposed over the first surface and a second conductive lamina disposed over the second surface. Further, the first conductive lamina and the second conductive lamina are electrically coupled.
Abstract:
A common mode choke includes at least two groups of multi-phase coils wound on a magnetic core for balancing differential mode inductance between the phases. The multi-phase coils in each group are series connected and concentrically wound on a respective portion of the magnetic core. Each group of multi-phase coils is non-overlapping with each other group of multi-phase coils.