Abstract:
It is a system for supplying power to at least one load. The system comprises at least one power source, load bank and control device coupled to the at least one load. The load bank is coupled to at least one power source and at least one load. The load bank comprises a controllable voltage source, at least three resistors coupled between an output side of the controllable voltage source and the at least one power source, and at least one storage element. The controllable voltage source comprises more than one switches. And the at least one storage element comprises one or more capacitors, batteries, or combinations thereof. The control device is configured for controlling the switches during a first condition such that, to the extent that an output power of the at least one power source exceeds a requisite power of the at least one load, any excess output power is either supplied to the at least one storage element or consumed by the at least three resistors. This invention also provides a method for supplying power to at least one load.
Abstract:
A power conversion system is disclosed including a DC bus for receiving DC power, a power converter for converting the DC power to AC power, and a controller. The controller includes an active power regulator for generating a phase angle command signal, a reactive power regulator for generating a voltage magnitude command, and an active power (P) and reactive power (Q) decoupling unit for decoupling interaction between the active and reactive power regulators. The PQ decoupling unit includes an active power compensation element and a reactive power compensation element. The active power compensation element is used for generating a phase angle compensation signal based on a reactive power error signal, to compensate the phase angle command signal. The reactive power compensation element is used for generating a voltage magnitude compensation signal based on an active power error signal, to compensate the voltage magnitude command signal.