Collaborative disparity decomposition

    公开(公告)号:US11816829B1

    公开(公告)日:2023-11-14

    申请号:US18074507

    申请日:2022-12-04

    摘要: A novel disparity computation technique is presented which comprises multiple orthogonal disparity maps, generated from approximately orthogonal decomposition feature spaces, collaboratively generating a composite disparity map. Using an approximately orthogonal feature set extracted from such feature spaces produces an approximately orthogonal set of disparity maps that can be composited together to produce a final disparity map. Various methods for dimensioning scenes and are presented. One approach extracts the top and bottom vertices of a cuboid, along with the set of lines, whose intersections define such points. It then defines a unique box from these two intersections as well as the associated lines. Orthographic projection is then attempted, to recenter the box perspective. This is followed by the extraction of the three-dimensional information that is associated with the box, and finally, the dimensions of the box are computed. The same concepts can apply to hallways, rooms, and any other object.

    Collaborative disparity decomposition

    公开(公告)号:US12125191B1

    公开(公告)日:2024-10-22

    申请号:US18495496

    申请日:2023-10-26

    摘要: A novel disparity computation technique is presented which comprises multiple orthogonal disparity maps, generated from approximately orthogonal decomposition feature spaces, collaboratively generating a composite disparity map. Using an approximately orthogonal feature set extracted from such feature spaces produces an approximately orthogonal set of disparity maps that can be composited together to produce a final disparity map. Various methods for dimensioning scenes and are presented. One approach extracts the top and bottom vertices of a cuboid, along with the set of lines, whose intersections define such points. Tt then defines a unique box from these two intersections as well as the associated lines. Orthographic projection is then attempted, to recenter the box perspective. This is followed by the extraction of the three-dimensional information that is associated with the box, and finally, the dimensions of the box are computed. The same concepts can apply to hallways, rooms, and any other object.