PREDICTING PERFORMANCE OF CONTENT ITEMS USING LOSS FUNCTIONS
    1.
    发明申请
    PREDICTING PERFORMANCE OF CONTENT ITEMS USING LOSS FUNCTIONS 审中-公开
    使用损失函数预测内容项目的性能

    公开(公告)号:US20140372202A1

    公开(公告)日:2014-12-18

    申请号:US13919600

    申请日:2013-06-17

    Applicant: Google Inc.

    CPC classification number: G06Q30/0242 G06Q30/0273

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for providing a content item. In one aspect, a method includes receiving a content item request. A set of candidate content items that are eligible to be provided in response to the content item request is identified. A performance measure is predicted for each candidate content item based at least in part on a loss function that specifies an economic cost of incorrectly predicting the performance measure for the candidate content item. The loss function can be based in part on a distribution of competing bid values for a set of previous content item impressions. A candidate content item can be selected for presentation based on the predicted performance measure for the candidate content items. The selected candidate content item is provided in response to the content item request.

    Abstract translation: 方法,系统和装置,包括在计算机存储介质上编码的用于提供内容项的计算机程序。 一方面,一种方法包括接收内容项请求。 识别符合为响应于内容项目请求而被提供的一组候选内容项目。 至少部分地基于指定错误地预测候选内容项的性能测量的经济成本的损失函数来预测每个候选内容项的性能度量。 损失函数可以部分地基于一组先前内容项目展示的竞争出价值的分布。 可以基于候选内容项目的预测性能测量来选择候选内容项目以用于呈现。 响应于内容项请求提供所选候选内容项。

    RANKING CONTENT ITEMS USING PREDICTED PERFORMANCE
    2.
    发明申请
    RANKING CONTENT ITEMS USING PREDICTED PERFORMANCE 有权
    使用预测性能排列内容项

    公开(公告)号:US20150046467A1

    公开(公告)日:2015-02-12

    申请号:US13963242

    申请日:2013-08-09

    Applicant: GOOGLE INC.

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for ranking content items. In one aspect, a method includes identifying, for a content item, a bid value specifying an amount a content item provider is willing to pay for user interaction with the content item. A predicted performance measure is identified for the content item. The predicted performance measure is adjusted based on a weighting factor for the content item. The weighting factor for the content item is indicative of confidence that the predicted performance measure will match an actual performance measure for the content item and can be different than a weighting factor for another content item identified for inclusion in a ranking with the content item. A rank score is determined for the content item using the bid value and adjusted predicted performance measure. The content item is provided based on the rank score.

    Abstract translation: 方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于对内容项进行排名。 一方面,一种方法包括为内容项目识别指定内容项目提供者愿意为与用户与内容项目进行交互而付费的金额的出价值。 为内容项目确定预测的性能度量。 基于内容项的加权因子来调整预测的性能度量。 内容项的加权因子表示预测的性能测量值与内容项目的实际性能测量值相一致的可信度,并且可以不同于被标识为包含在与内容项目的排名中的另一内容项目的加权因子。 使用出价值和​​经调整的预测绩效度量来确定内容项的排名得分。 内容项目是根据排名得分提供的。

    Performance based content item ranking

    公开(公告)号:US09996851B1

    公开(公告)日:2018-06-12

    申请号:US14171150

    申请日:2014-02-03

    Applicant: Google Inc.

    CPC classification number: G06Q30/0242

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for distributing content items are disclosed. In one aspect, a method includes accessing a scaling factor value and accessing a first page value range specifying at least a high page value and a low page value. A determination is made that a first ranking of content items based on the high page value does not match a second ranking of the content items that is based on the low page value. In response to determining that the first ranking does not match the second ranking, an updated first ranking and an updated second ranking are determined based on a second page value range. A determination is made that the updated first ranking matches the updated second ranking. Content items are distributed based on the updated first ranking.

    Ranking content items using predicted performance
    4.
    发明授权
    Ranking content items using predicted performance 有权
    使用预测的表现排列内容项

    公开(公告)号:US09256688B2

    公开(公告)日:2016-02-09

    申请号:US13963242

    申请日:2013-08-09

    Applicant: Google Inc.

    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for ranking content items. In one aspect, a method includes identifying, for a content item, a bid value specifying an amount a content item provider is willing to pay for user interaction with the content item. A predicted performance measure is identified for the content item. The predicted performance measure is adjusted based on a weighting factor for the content item. The weighting factor for the content item is indicative of confidence that the predicted performance measure will match an actual performance measure for the content item and can be different than a weighting factor for another content item identified for inclusion in a ranking with the content item. A rank score is determined for the content item using the bid value and adjusted predicted performance measure. The content item is provided based on the rank score.

    Abstract translation: 方法,系统和装置,包括在计算机存储介质上编码的计算机程序,用于对内容项进行排名。 一方面,一种方法包括为内容项目识别指定内容项目提供者愿意为与用户与内容项目进行交互而付费的金额的出价值。 为内容项目确定预测的性能度量。 基于内容项的加权因子来调整预测的性能度量。 内容项的加权因子表示预测的性能测量值与内容项目的实际性能测量值相一致的可信度,并且可以不同于被标识为包含在与内容项目的排名中的另一内容项目的加权因子。 使用出价值和​​经调整的预测绩效度量来确定内容项的排名得分。 内容项目是根据排名得分提供的。

    Ranking Content Items Based on a Value of Learning
    5.
    发明申请
    Ranking Content Items Based on a Value of Learning 审中-公开
    基于学习价值的内容项目排名

    公开(公告)号:US20150066659A1

    公开(公告)日:2015-03-05

    申请号:US14011524

    申请日:2013-08-27

    Applicant: Google Inc.

    CPC classification number: G06Q30/0275

    Abstract: Methods, systems, and apparatus include computer programs encoded on a computer-readable storage medium, including a method for ranking content. A request for content is received. Eligible content items are identified, including a first eligible content item for which an uncertainty level of an associated expected click-through rate is above a predefined threshold. A subset of the eligible content items is evaluated, including the first eligible content item including producing a score. The score is a product of an associated bid and click-through rate for a given eligible content item. Producing the score includes adjusting a product of a bid times an expected click-through rate for the first eligible content item by a value of learning that represents a value for exploring the first eligible content item as a response to the request. The subset of eligible content items is ranked based on the produced scores.

    Abstract translation: 方法,系统和装置包括在计算机可读存储介质上编码的计算机程序,包括用于对内容进行排序的方法。 收到内容请求。 识别符合条件的内容项目,包括第一合格内容项目,其中相关联的预期点击率的不确定性水平高于预定阈值。 评估符合条件的内容项目的一部分,包括第一个符合条件的内容项目,包括产生分数。 该分数是给定符合条件的内容项目的关联出价和点击率的产品。 生成分数包括通过学习值将出价次数的预期点击率调整为第一符合条件的内容项目的值作为对请求的响应来调整出价的产品倍数。 符合条件的内容项目的子集根据产生的分数进行排名。

Patent Agency Ranking