SCALABLE CIRCUIT-UNDER-PAD DEVICE TOPOLOGIES FOR LATERAL GaN POWER TRANSISTORS

    公开(公告)号:US20190081141A1

    公开(公告)日:2019-03-14

    申请号:US15988453

    申请日:2018-05-24

    Abstract: Circuit-Under-Pad (CUP) device topologies for high current lateral GaN power transistors comprise first and second levels of on-chip metallization M1 and M2; M1 defines source, drain and gate finger electrodes of a plurality of sections of a multi-section transistor and a gate bus; M2 defines an overlying contact structure comprising a drain pad and source pads extending over active regions of each section. The drain and source pads of M2 are interconnected by conductive micro-vias to respective underlying drain and source finger electrodes of M1. The pad structure and the micro-via interconnections are configured to reduce current density in self-supported widths of source and drain finger electrodes, i.e. to optimize a maximum current density for each section. For reduced gate loop inductance, part of each source pad is routed over the gate bus. Proposed CUP device structures provide for higher current carrying capability and reduced drain-source resistance.

    SCALABLE CIRCUIT-UNDER-PAD DEVICE TOPOLOGIES FOR LATERAL GaN POWER TRANSISTORS

    公开(公告)号:US20210367035A1

    公开(公告)日:2021-11-25

    申请号:US17393846

    申请日:2021-08-04

    Abstract: Circuit-Under-Pad (CUP) device topologies for high current lateral GaN power transistors comprise source, drain and gate finger electrodes on active regions of a plurality of sections of a multi-section transistor, and a contact structure comprising source and drain contact areas, e.g. drain and source pads extending over active regions of each section, interconnected by conductive micro-vias to respective underlying drain and source finger electrodes. Alternatively, source contact areas comprise parts of a source bus which runs over inactive regions. For reduced gate loop inductance, the source bus may be routed over or under the to gate bus. The pad structure and the micro-via interconnections are configured to reduce current density in self-supported widths of the drain finger electrodes. Example CUP device structures provide for higher current carrying capability and reduced drain-source resistance.

    HIGH CURRENT LATERAL GaN TRANSISTORS WITH SCALABLE TOPOLOGY AND GATE DRIVE PHASE EQUALIZATION

    公开(公告)号:US20190081623A1

    公开(公告)日:2019-03-14

    申请号:US15704458

    申请日:2017-09-14

    Abstract: Large area, high current, lateral GaN power transistors are implemented using an on-chip interconnect topology wherein the transistor is arranged as an array of sections, each section comprising a set of transistor islands; gate and source buses that form each gate drive loop have substantially the same track widths; the source bus runs over or under the gate bus, and the tracks are inductively coupled to provide flux cancellation in the gate drive loop, thereby reducing parasitic inductances. The gate delay in each gate drive loop is reduced, minimizing the gate drive phase difference across the transistor. An overlying current redistribution layer preferably has a track width no greater than that of the underlying source and drain buses, for efficient coupling. This topology provides improved scalability, enabling fabrication of multi-section, large scale, high current lateral GaN transistors with reduced gate drive loop inductance, for improved operational stability.

    SCALABLE CIRCUIT-UNDER-PAD DEVICE TOPOLOGIES FOR LATERAL GaN POWER TRANSISTORS

    公开(公告)号:US20200091291A1

    公开(公告)日:2020-03-19

    申请号:US16688008

    申请日:2019-11-19

    Abstract: Circuit-Under-Pad (CUP) device topologies for high current lateral GaN power transistors comprise first and second levels of on-chip metallization M1 and M2; M1 defines source, drain and gate finger electrodes of a plurality of sections of a multi-section transistor and a gate bus; M2 defines an overlying contact structure comprising a drain pad and source pads extending over active regions of each section. The drain and source pads of M2 are interconnected by conductive micro-vias to respective underlying drain and source finger electrodes of M1. The pad structure and the micro-via interconnections are configured to reduce current density in self-supported widths of source and drain finger electrodes, i.e. to optimize a maximum current density for each section. For reduced gate loop inductance, part of each source pad is routed over the gate bus. Proposed CUP device structures provide for higher current carrying capability and reduced drain-source resistance.

Patent Agency Ranking