-
公开(公告)号:US10795327B2
公开(公告)日:2020-10-06
申请号:US15870560
申请日:2018-01-12
Applicant: General Electric Company
Inventor: Steven Robert Gray , John Robert Hoare , Justin Michael Foehner , Huan Tan , Shiraj Sen , Romano Patrick
Abstract: The present approach employs a context-aware simulation platform to facilitate control of a robot remote from an operator. Such a platform may use the prior domain/task knowledge along with the sensory feedback from the remote robot to infer context and may use inferred context to dynamically change one or both of simulation parameters and a robot-environment-task state being simulated. In some implementations, the simulator instances make forward predictions of their state based on task and robot constraints. In accordance with this approach, an operator may therefore issue a general command or instruction to a robot and based on this generalized guidance, the actions taken by the robot may be simulated, and the corresponding results visually presented to the operator prior to evaluate prior to the action being taken.
-
公开(公告)号:US20200158091A1
公开(公告)日:2020-05-21
申请号:US16192807
申请日:2018-11-16
Applicant: General Electric Company
Inventor: Shiraj Sen , Todd William Danko , John Robert Hoare , Charles Burton Theurer , Douglas Forman , Judith Ann Guzzo
Abstract: A system and method for inspecting, repairing and upgrading wind turbine rotor blades of a wind turbine. The system including deploying one or more cables via an unmanned aerial vehicle (UAV), a balloon, a ballistic mechanism or a catapult to position the one or more cables in draping engagement with a portion of the wind turbine. A climbing robot is positioned to ascend the one or more cables and perform a task related to inspecting for indications, repair of indications or upgrading the rotor blade. A slave robot system, disposed at the base location and anchored to the one or more cables, provides modulation of the cables for positioning of the climbing robot relative to the wind turbine as it ascends and descends the one or more cables. After completion of the task, the climbing robot descends the one or more cables and the cables are removed from the wind turbine.
-
公开(公告)号:US20210000445A1
公开(公告)日:2021-01-07
申请号:US16458487
申请日:2019-07-01
Applicant: General Electric Company
Inventor: Huan Tan , Bo Wang , Heather Chan , David Martin Mills , Aaron Mark Dentinger , David Andrew Shoudy , Steven Robert Gray , John Robert Hoare
Abstract: A robotic body scanning system includes a robotic manipulator, a force sensor, a probe, a surface sensing system, and a computing device. The probe is attached to the robotic manipulator and configured to scan the portion of the human body. The surface sensing system is configured to detect a surface of the portion of the human body and generate data representing the portion of the human body. The computing device is configured to receive data representing the portion of the human body from said surface sensing system and generate two or three-dimensional representations of the portion of the human body. The computing device includes a trajectory generation module configured to generate an adapted trajectory for the probe to follow based on the two or three-dimensional representations. The robotic manipulator is configured to move the probe along the adapted trajectory along the portion of the human body.
-
公开(公告)号:US20200158094A1
公开(公告)日:2020-05-21
申请号:US16192810
申请日:2018-11-16
Applicant: General Electric Company
Inventor: Todd William Danko , Shiraj Sen , John Robert Hoare , Charles Burton Theurer , Douglas Forman , Judith Ann Guzzo
Abstract: A method including positioning a modular robotic component proximate an area of interest on a surface of a wind turbine. The modular robotic component including a plurality of modules that perform a plurality of tasks. The method further including inspecting the area of interest with the modular robotic component for an indication requiring at least one of repair or upgrade and operating the modular robotic component to perform the plurality of tasks sequentially as the modular robotic component moves along the surface of the wind turbine. A modular robotic component and system including the modular robotic component are disclosed.
-
公开(公告)号:US20190219972A1
公开(公告)日:2019-07-18
申请号:US15870560
申请日:2018-01-12
Applicant: General Electric Company
Inventor: Steven Robert Gray , John Robert Hoare , Justin Michael Foehner , Huan Tan , Shiraj Sen , Romano Patrick
Abstract: The present approach employs a context-aware simulation platform to facilitate control of a robot remote from an operator. Such a platform may use the prior domain/task knowledge along with the sensory feedback from the remote robot to infer context and may use inferred context to dynamically change one or both of simulation parameters and a robot-environment-task state being simulated. In some implementations, the simulator instances make forward predictions of their state based on task and robot constraints. In accordance with this approach, an operator may therefore issue a general command or instruction to a robot and based on this generalized guidance, the actions taken by the robot may be simulated, and the corresponding results visually presented to the operator prior to evaluate prior to the action being taken.
-
6.
公开(公告)号:US11408401B2
公开(公告)日:2022-08-09
申请号:US16381169
申请日:2019-04-11
Applicant: General Electric Company
Inventor: Todd William Danko , Judith Ann Guzzo , John Robert Hoare , Yakov Polishchuk , Douglas Forman , Shiraj Sen
IPC: F03D80/50 , B62D57/024
Abstract: A robotic access system including a robotic fan crawler configured to traverse a surface of a wind turbine and perform one or more tasks. The robotic fan crawler includes one or more fans to adhere the robotic fan crawler to the surface of the wind turbine and one or more driving components to drive the robotic fan crawler along the surface of the wind turbine. The robotic fan crawler further includes one or more omnidirectional cameras operable to capture images of the surface from multiple perspectives during an inspection activity and data collection period. One or more steering components provide directional changes of the robotic fan crawler during operation. A tether cable is coupled to the robotic fan crawler and a tether management system to provide one or more of power, communications, grounding, supplies and distance calculations.
-
公开(公告)号:US20200326706A1
公开(公告)日:2020-10-15
申请号:US16845611
申请日:2020-04-10
Applicant: General Electric Company
Inventor: John Robert Hoare , Justin Foehner , Steven Robert Gray , Yewteck Tan
Abstract: A system includes at least one unmanned aerial vehicle and at least one unmanned vehicle communicatively coupled to the unmanned aerial vehicle. The unmanned aerial vehicle includes a propulsion system and an onboard pilot system configured to determine a flight path for the unmanned aerial vehicle. The unmanned vehicle includes a propulsion system and a localization system configured to determine a location of the unmanned aerial vehicle relative to the unmanned vehicle. The unmanned vehicle further includes a communication component configured to transmit location information to the unmanned aerial vehicle. The onboard pilot system is configured to determine the flight path based on the location information provided by the unmanned vehicle.
-
8.
公开(公告)号:US20200325878A1
公开(公告)日:2020-10-15
申请号:US16381169
申请日:2019-04-11
Applicant: General Electric Company
Inventor: Todd William Danko , Judith Ann Guzzo , John Robert Hoare , Yakov Polishchuk , Douglas Forman , Shiraj Sen
IPC: F03D80/50
Abstract: A robotic access system including a robotic fan crawler configured to traverse a surface of a wind turbine and perform one or more tasks. The robotic fan crawler includes one or more fans to adhere the robotic fan crawler to the surface of the wind turbine and one or more driving components to drive the robotic fan crawler along the surface of the wind turbine. The robotic fan crawler further includes one or more omnidirectional cameras operable to capture images of the surface from multiple perspectives during an inspection activity and data collection period. One or more steering components provide directional changes of the robotic fan crawler during operation. A tether cable is coupled to the robotic fan crawler and a tether management system to provide one or more of power, communications, grounding, supplies and distance calculations.
-
公开(公告)号:US11333132B2
公开(公告)日:2022-05-17
申请号:US16851546
申请日:2020-04-17
Applicant: General Electric Company
Inventor: Judith Ann Guzzo , Douglas Forman , Todd William Danko , John Robert Hoare
Abstract: A system and method for performing a task on a LPS of a wind turbine includes a robotic testing device having a plurality of clamping arms and a LPS test probe coupled to a robotic end effector. The robotic testing device can be positioned around an outer perimeter of a rotor blade of the wind turbine. A cable, coupled to an up-tower anchor point, is attached to the robotic testing device and extends between the anchor point and a support surface. A lightning receptor of the LPS is between the up-tower anchor point and the tower support surface. As the cable is displaced, the robotic testing device moves to a position at which it is clamped to the rotor blade, adjacent the lightning receptor. The end effector moves to position the test probe in contact with the lightning receptor to conduct the test on the LPS.
-
公开(公告)号:US11174847B2
公开(公告)日:2021-11-16
申请号:US16192810
申请日:2018-11-16
Applicant: General Electric Company
Inventor: Todd William Danko , Shiraj Sen , John Robert Hoare , Charles Burton Theurer , Douglas Forman , Judith Ann Guzzo
IPC: F03D80/50 , F03D17/00 , B25J9/16 , B25J19/02 , G05B19/042
Abstract: A method including positioning a modular robotic component proximate an area of interest on a surface of a wind turbine. The modular robotic component including a plurality of modules that perform a plurality of tasks. The method further including inspecting the area of interest with the modular robotic component for an indication requiring at least one of repair or upgrade and operating the modular robotic component to perform the plurality of tasks sequentially as the modular robotic component moves along the surface of the wind turbine. A modular robotic component and system including the modular robotic component are disclosed.
-
-
-
-
-
-
-
-
-