Abstract:
A dual decoder for a wireless charging receiver and a wireless charging receiver using the same are provided. The wireless charging receiver includes a resonant circuit, a rectifier circuit and a dual decoder for the wireless charging receiver. The rectifier circuit coupled to the resonant circuit converts wireless energy received by the resonant circuit into a direct current. The dual decoder includes a frequency decoding circuit and a voltage amplitude decoding circuit. The frequency decoding circuit performs decoding according to a frequency of a voltage of the resonant circuit to obtain an instruction of a wireless transmitter. The voltage amplitude decoding circuit extracts a carrier on the voltage of the resonant circuit through a filter, and decodes the carrier into the instruction of the wireless transmitter. With the complementary of two-way decoding, the communication system becomes robuster.
Abstract:
A dual decoder for a wireless charging receiver and a wireless charging receiver using the same are provided. The wireless charging receiver includes a resonant circuit, a rectifier circuit and a dual decoder for the wireless charging receiver. The rectifier circuit coupled to the resonant circuit converts wireless energy received by the resonant circuit into a direct current. The dual decoder includes a frequency decoding circuit and a voltage amplitude decoding circuit. The frequency decoding circuit performs decoding according to a frequency of a voltage of the resonant circuit to obtain an instruction of a wireless transmitter. The voltage amplitude decoding circuit extracts a carrier on the voltage of the resonant circuit through a filter, and decodes the carrier into the instruction of the wireless transmitter. With the complementary of two-way decoding, the communication system becomes robuster.
Abstract:
A wireless charging circuit for power bank and a power bank thereof are provided in the present invention. The wireless charging circuit includes a boost DC to DC converter, a unidirectional conductive element and a wireless power converter. The input terminal of the boost DC to DC converter is coupled to the battery to receive the battery voltage. The output terminal of the boost DC to DC converter outputs a converted DC voltage. The first terminal of the unidirectional conductive element is coupled to the battery to receive the battery voltage. The input terminal of the wireless power converter is coupled to the second terminal of the unidirectional conductive element. When the wireless charging circuit performs the detection for the wireless power receiver, the wireless power converter disables the boost DC to DC converter.
Abstract:
A device with both functions of wireless power transmitter and wireless power receiver and a circuit thereof are provided in the present invention. The device with both functions of wireless power transmitter and wireless power receiver and the circuit thereof use the same winding for performing the energy output and the energy receiving function. In addition, in order to use the same winding for performing the energy output and the energy receiving function, the present invention adopts full bridge topology. However, two lower switches are controlled by the resonant circuit when the device is in the energy receiving mode. The upper switches are not only for receiving the power voltage, but also for rectifying the energy received from the winding to output to the device with both functions of wireless power transmitter and wireless power receiver.
Abstract:
A decoder for a wireless charging transmitter and a wireless charging transmitter using the same are provided in the present invention. In order to adapt the wide range of the received signal from the wireless charging receiver, which usually results in the error of the decode, the feedback circuit of the wireless charging transmitter is changed, so that the signal in a certain swing is amplified by an original gain, and the signal out of the certain swing is amplified by a limited gain. Therefore, the amplified signal is able to show the characteristic of the original received signal. Thus, the accuracy of decoding is increased.
Abstract:
A circuit for signal decoding in RFID or wireless power charging is provided in the present invention. The implement of the present invention is to add a current sense resistor connected to an upper switch or a lower switch the up arm switch or low arm switch to decode the signal on the current sense resistor. Since the error would occur in the original voltage decoder of the wireless power or RFID when the load is heavy and voltage signal swing is large, such that the charge status and then the off-line status cyclically occur and then the charge status . . . occurs in cycle when the mobile device is charging under charge. Since the present invention uses the voltage and current for decoding at the same time, the decoding would be succeed whenever the load is light or heavy.