Abstract:
The present invention provides for an improved tire tread having an improved hydroplaning resistance. Specifically, the tread includes one or more tread blocks having one or more walls with an undercut surface to deviate the flow of water from a circumferential groove(s) to a lateral groove(s), thereby providing for improved worn hydroplaning performance of tires.
Abstract:
Pneumatic tire with improved wear balance and improved handling performance under tire service conditions like loading, braking, and cornering. The tread of the pneumatic tire includes a radially outermost surface with at least first, second, and third regions defined between the tire's equatorial plane and the tire's shoulder. The second region is arranged coextensive with the third region to define a circumferential interface and the second region is tangent with the third region along the circumferential interface. A radius of curvature of the third region is less than a radius of curvature of the second region.
Abstract:
A mold and molding device for forming a sunken groove in a tire is provided. The molding device includes a thin flexible wire having one or more molded elastomer elements thereon. The flexible wire is preferably hyperelastic and the molded elastomer is preferably silicone rubber.
Abstract:
A tire includes a plurality of tread blocks disposed circumferentially around the tire. At least one sipe is formed into at least one of the tread blocks and is defined by first and second confronting sidewalls. The sipe has a cross-sectional profile in a plane generally perpendicular to the top surface of the tread block, which profile has a generally arcuate central portion and first and second ends separated by the central portion. The sidewalls are spaced apart at least one first width at the central portion of the sipe, and are spaced apart at least one second width at the ends, wherein the second width is greater than the first width. In one embodiment, the sipe has a cross-sectional profile having a stepped configuration.
Abstract:
A tire mold and a molding device for forming a sunken groove in a tire are provided. The molding device includes one or more rigid elements joined to a flexible member. The flexible member is formed from a flexible material, preferably a superalloy, or hyperelastic material. The molding device may further comprise a magnet. A portion of the flexible member is positioned in contact with a first surface of a relief forming element of a mold and the rigid element has a mating surface in mating contact with a second surface of the relief forming element. The mold further may further comprise a second relief forming element positioned adjacent the first relief forming element, wherein the rigid element further includes an outer surface in mating contact with a surface of said second relief forming element.
Abstract:
A tire having an outer surface and plurality of circumferential and lateral grooves formed into the outer surface. The circumferential and lateral grooves extend to at least one groove depth to define a groove bottom surface. The circumferential and lateral grooves also define a plurality of tread blocks disposed around the circumference of the tire. The tire further includes at least one tie bar extending between at least two of the tread blocks and across at least one of the circumferential and lateral grooves. The tie bar is spaced from the groove bottom surface. In one aspect of the invention, the tire is manufactured in a mold and the tie bar is formed by a supplemental molding member that is removed from the molded tire after the main molding member has been removed from the tire.
Abstract:
The present invention provides for an improved device for molding keyhole sipes larger in size, i.e. sipes having a wider passage, than currently being formed in treads that will avoid damaging the tread during formation and removal thereof from a mold. The device includes an elongated deformable body member having a blade extending in a direction away therefrom and substantially along the length thereof. The body member also includes a stiffening member securely fixed in position therein that extends substantially the length thereof. The stiffening member provides a desired rigidity to the deformable body member, thereby limiting flexion along its length under the stress of a rubber formulation when the mold is closed during the molding process. Also, the deformable body member provides low stress on the tread when a slit of the keyhole sipe is pulled around the body member during removal of the tread from a mold.
Abstract:
The present invention provides for an improved device for molding keyhole sipes larger in size, i.e. sipes having a wider passage, than currently being formed in treads that will avoid damaging the tread during formation and removal thereof from a mold. The device includes an elongated deformable body member having a blade extending in a direction away therefrom and substantially along the length thereof. The body member also includes a stiffening member securely fixed in position therein that extends substantially the length thereof. The stiffening member provides a desired rigidity to the deformable body member, thereby limiting flexion along its length under the stress of a rubber formulation when the mold is closed during the molding process. Also, the deformable body member provides low stress on the tread when a slit of the keyhole sipe is pulled around the body member during removal of the tread from a mold.
Abstract:
A tire includes a plurality of tread blocks disposed circumferentially around the tire. At least one sipe is formed into at least one of the tread blocks and is defined by first and second confronting sidewalls. The sipe has a cross-sectional profile in a plane generally perpendicular to the top surface of the tread block, which profile has a generally arcuate central portion and first and second ends separated by the central portion. The sidewalls are spaced apart at least one first width at the central portion of the sipe, and are spaced apart at least one second width at the ends, wherein the second width is greater than the first width. In one embodiment, the sipe has a cross-sectional profile having a stepped configuration.
Abstract:
A mold and molding device for forming a sunken groove in a tire is provided. The molding device includes a thin flexible wire having a desired cross-sectional shape. The wire thickness can range from about 0.5 mm to about 5 mm. The flexible wire is preferably hyperelastic. An optional molding element may be connected to the flexible wire.