Abstract:
Disclosed is a system and method for reducing the total latency for transferring a frame from the low latency camera system mounted on an aerial vehicle to the display of the remote controller. The method includes reducing the latency through each of the modules of the system, i.e. through a camera module, an encoder module, a wireless interface transmission, wireless interface receiver module, a decoder module and a display module. To reduce the latency across the modules, methods such as overclocking the image processor, pipelining the frame, squashing the processed frame, using a fast hardware encoder that can perform slice based encoding, tuning the wireless medium using queue sizing, queue flushing, bitrate feedback, physical medium rate feedback, dynamic encoder parameter tuning and wireless radio parameter adjustment, using a fast hardware decoder that can perform slice based decoding and overclocking the display module are used.
Abstract:
Disclosed is a system and method for reducing the total latency for transferring a frame from the low latency camera system mounted on an aerial vehicle to the display of the remote controller. The method includes reducing the latency through each of the modules of the system, i.e. through a camera module, an encoder module, a wireless interface transmission, wireless interface receiver module, a decoder module and a display module. To reduce the latency across the modules, methods such as overclocking the image processor, pipelining the frame, squashing the processed frame, using a fast hardware encoder that can perform slice based encoding, tuning the wireless medium using queue sizing, queue flushing, bitrate feedback, physical medium rate feedback, dynamic encoder parameter tuning and wireless radio parameter adjustment, using a fast hardware decoder that can perform slice based decoding and overclocking the display module are used.
Abstract:
Disclosed is a system and method for reducing the total latency for transferring a frame from the low latency camera system mounted on an aerial vehicle to the display of the remote controller. The method includes reducing the latency through each of the modules of the system, i.e. through a camera module, an encoder module, a wireless interface transmission, wireless interface receiver module, a decoder module and a display module. To reduce the latency across the modules, methods such as overclocking the image processor, pipelining the frame, squashing the processed frame, using a fast hardware encoder that can perform slice based encoding, tuning the wireless medium using queue sizing, queue flushing, bitrate feedback, physical medium rate feedback, dynamic encoder parameter tuning and wireless radio parameter adjustment, using a fast hardware decoder that can perform slice based decoding and overclocking the display module are used.
Abstract:
Disclosed is a system and method for reducing the total latency for transferring a frame from the low latency camera system mounted on an aerial vehicle to the display of the remote controller. The method includes reducing the latency through each of the modules of the system, i.e. through a camera module, an encoder module, a wireless interface transmission, wireless interface receiver module, a decoder module and a display module. To reduce the latency across the modules, methods such as overclocking the image processor, pipelining the frame, squashing the processed frame, using a fast hardware encoder that can perform slice based encoding, tuning the wireless medium using queue sizing, queue flushing, bitrate feedback, physical medium rate feedback, dynamic encoder parameter tuning and wireless radio parameter adjustment, using a fast hardware decoder that can perform slice based decoding and overclocking the display module are used.
Abstract:
The present teachings provide a system and method. The system and method include receiving images or video frames at a wireless receiver interface from a wireless transmitter. The system and method include performing decoder nudging while decoding the images or the video frames received by the wireless transmitter. Overclocking a display of a controller to an overclocked frequency. Outputting decoded images or decoded video frames to the display of the controller at the overclocked frequency.