Abstract:
Systems, methods, and apparatus for accessing distributed models in automated machine processing, including using large language models in machine translation, speech recognition and other applications.
Abstract:
Systems, methods, and apparatus for accessing distributed models in automated machine processing, including using large language models in machine translation, speech recognition and other applications.
Abstract:
Systems, methods, and computer program products for machine translation are provided. In some implementations a system is provided. The system includes a language model including a collection of n-grams from a corpus, each n-gram having a corresponding relative frequency in the corpus and an order n corresponding to a number of tokens in the n-gram, each n-gram corresponding to a backoff n-gram having an order of n−1 and a collection of backoff scores, each backoff score associated with an n-gram, the backoff score determined as a function of a backoff factor and a relative frequency of a corresponding backoff n-gram in the corpus.
Abstract:
A semantic locator determines whether input sequences form semantically meaningful units. The semantic locator includes a coherence component that calculates a coherence of the terms in the sequence and a variation component that calculates the variation in terms that surround the sequence. A heuristics component may additionally refine results of the coherence component and the variation component. A decision component may make the determination of whether the sequence is a semantic unit based on the results of the coherence component, variation component, and heuristics component.
Abstract:
Systems, methods, and computer program products for machine translation are provided. In some implementations a system is provided. The system includes a language model including a collection of n-grams from a corpus, each n-gram having a corresponding relative frequency in the corpus and an order n corresponding to a number of tokens in the n-gram, each n-gram corresponding to a backoff n-gram having an order of n−1 and a collection of backoff scores, each backoff score associated with an n-gram, the backoff score determined as a function of a backoff factor and a relative frequency of a corresponding backoff n-gram in the corpus.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media for performing machine learning tasks. One method includes receiving (i) a model input, and (ii) data identifying a first machine learning task to be performed on the model input to generate a first type of model output for the model input; augmenting the model input with an identifier for the first machine learning task to generate an augmented model input; and processing the augmented model input using a machine learning model, wherein the machine learning model has been trained on training data to perform a plurality of machine learning tasks including the first machine learning task, and wherein the machine learning model has been configured through training to process the augmented model input to generate a machine learning model output of the first type for the model input.
Abstract:
A server is configured to receive, from a client, a query and context information associated with a document; obtain search results, based on the query, that identify documents relevant to the query; analyze the context information to identify content; generate first scores for a hierarchy of topics, that correspond to measures of relevance of the topics to the content; select a topic that is most relevant to the context information when the topic is associated with a greatest first score; generate second scores for the search results that correspond to measures of relevance, of the search results, to the topic; select one or more of the search results as being most relevant to the topic when the search results are associated with one or more greatest second scores; generate a search result document that includes the selected search results; and send, to a client, the search result document.
Abstract:
Systems, methods, and apparatus for accessing distributed models in automated machine processing, including using large language models in machine translation, speech recognition and other applications.
Abstract:
Systems, methods, and apparatus for accessing distributed models in automated machine processing, including using large language models in machine translation, speech recognition and other applications.
Abstract:
Systems, methods, and apparatus for accessing distributed models in automated machine processing, including using large language models in machine translation, speech recognition and other applications.