Abstract:
A system for predicting and summarizing medical events from electronic health records includes a computer memory storing aggregated electronic health records from a multitude of patients of diverse age, health conditions, and demographics including medications, laboratory values, diagnoses, vital signs, and medical notes. The aggregated electronic health records are converted into a single standardized data structure format and ordered arrangement per patient, e.g., into a chronological order. A computer (or computer system) executes one or more deep learning models trained on the aggregated health records to predict one or more future clinical events and summarize pertinent past medical events related to the predicted events on an input electronic health record of a patient having the standardized data structure format and ordered into a chronological order. An electronic device configured with a healthcare provider-facing interface displays the predicted one or more future clinical events and the pertinent past medical events of the patient.
Abstract:
Systems, methods, and apparatus for accessing distributed models in automated machine processing, including using large language models in machine translation, speech recognition and other applications.
Abstract:
Provided is a method and system for indexing documents in a collection of linked documents. A link log, including one or more pairings of source documents and target documents is accessed. A sorted anchor map, containing one or more target document to source document pairings, is generated. The pairings in the sorted anchor map are ordered based on target document identifiers.
Abstract:
Systems, methods, and apparatus for accessing distributed models in automated machine processing, including using large language models in machine translation, speech recognition and other applications.
Abstract:
A search engine server system receives from a client system a search query and identifies a set of documents in accordance with the search query. A content snippet corresponding to content in a respective document of the identified set of documents is generated, the content snippet associated with at least one query term of the one or more query terms in the search query. A response to the search query is returned to the client system, the response including information identifying at least the respective document and including the content snippet. Generating the content snippet includes performing a first decompression operation on first token identifiers, from a compressed document repository, to provide a set of second token identifiers, and performing a second decompression operation on the set of second token identifiers to recover uncompressed content comprising a portion of the respective document.
Abstract:
Systems, methods, and apparatus for accessing distributed models in automated machine processing, including using large language models in machine translation, speech recognition and other applications.
Abstract:
A large-scale data processing system and method for processing data in a distributed and parallel processing environment is disclosed. The system comprises a set of interconnected computing systems, each having one or more processors and memory. The set of interconnected computing systems include: a set of application-independent map modules for reading portions of input files containing data, and for producing intermediate data values by applying at least one user-specified, application-specific map operation to the data; a set of intermediate data structures distributed among a plurality of the interconnected computing systems for storing the intermediate data values; and a set of application-independent reduce modules, distinct from the plurality of application-independent map modules, for producing final output data by applying at least one user-specified, application-specific reduce operation to the intermediate data values.
Abstract:
A search engine server system receives from a client system a search query and identifies a set of documents in accordance with the search query. A content snippet corresponding to content in a respective document of the identified set of documents is generated, the content snippet associated with at least one query term of the one or more query terms in the search query. A response to the search query is returned to the client system, the response including information identifying at least the respective document and including the content snippet. Generating the content snippet includes performing a first decompression operation on first token identifiers, from a compressed document repository, to provide a set of second token identifiers, and performing a second decompression operation on the set of second token identifiers to recover uncompressed content comprising a portion of the respective document.
Abstract:
Systems, methods, and apparatus for accessing distributed models in automated machine processing, including using large language models in machine translation, speech recognition and other applications.
Abstract:
A system for predicting and summarizing medical events from electronic health records includes a computer memory storing aggregated electronic health records from a multitude of patients of diverse age, health conditions, and demographics including medications, laboratory values, diagnoses, vital signs, and medical notes. The aggregated electronic health records are converted into a single standardized data structure format and ordered arrangement per patient, e.g., into a chronological order. A computer (or computer system) executes one or more deep learning models trained on the aggregated health records to predict one or more future clinical events and summarize pertinent past medical events related to the predicted events on an input electronic health record of a patient having the standardized data structure format and ordered into a chronological order. An electronic device configured with a healthcare provider-facing interface displays the predicted one or more future clinical events and the pertinent past medical events of the patient.