Context-aware Neural Confidence Estimation for Rare Word Speech Recognition

    公开(公告)号:US20240029720A1

    公开(公告)日:2024-01-25

    申请号:US18340175

    申请日:2023-06-23

    Applicant: Google LLC

    CPC classification number: G10L15/16 G10L15/02 G10L15/22 G10L15/063 G10L15/19

    Abstract: An automatic speech recognition (ASR) system that includes an ASR model, a neural associative memory (NAM) biasing model, and a confidence estimation model (CEM). The ASR model includes an audio encoder configured to encode a sequence of audio frames characterizing a spoken utterance into a sequence of higher-order feature representations, and a decoder configured to receive the sequence of higher-order feature representations and output a final speech recognition result. The NAM biasing model is configured to receive biasing contextual information and modify the sequence of higher-order feature representations based on the biasing contextual information to generate, as output, biasing context vectors. The CEM is configured to compute a confidence of the final speech recognition result output by the decoder. The CEM is connected to the biasing context vectors generated by the NAM biasing model.

    Learning Word-Level Confidence for Subword End-To-End Automatic Speech Recognition

    公开(公告)号:US20220270597A1

    公开(公告)日:2022-08-25

    申请号:US17182592

    申请日:2021-02-23

    Applicant: Google LLC

    Abstract: A method includes receiving a speech recognition result, and using a confidence estimation module (CEM), for each sub-word unit in a sequence of hypothesized sub-word units for the speech recognition result: obtaining a respective confidence embedding that represents a set of confidence features; generating, using a first attention mechanism, a confidence feature vector; generating, using a second attention mechanism, an acoustic context vector; and generating, as output from an output layer of the CEM, a respective confidence output score for each corresponding sub-word unit based on the confidence feature vector and the acoustic feature vector received as input by the output layer of the CEM. For each of the one or more words formed by the sequence of hypothesized sub-word units, the method also includes determining a respective word-level confidence score for the word. The method also includes determining an utterance-level confidence score by aggregating the word-level confidence scores.

    Robustness Aware Norm Decay for Quantization Aware Training and Generalization

    公开(公告)号:US20240347043A1

    公开(公告)日:2024-10-17

    申请号:US18632237

    申请日:2024-04-10

    Applicant: Google LLC

    CPC classification number: G10L15/063

    Abstract: A method includes obtaining a plurality of training samples, determining a minimum integer fixed-bit width representing a maximum quantization of an automatic speech recognition (ASR) model, and training the ASR model on the plurality of training samples using a quantity of random noise. The ASR model includes a plurality of weights that each include a respective float value. The quantity of random noise is based on the minimum integer fixed-bit value. After training the ASR model, the method also includes selecting a target integer fixed-bit width greater than or equal to the minimum integer fixed-bit width, and for each respective weight of the plurality of weights, quantizing the respective weight from the respective float value to a respective integer associated with a value of the selected target integer fixed-bit width. The operations also include providing the quantized trained ASR model to a user device.

    Flickering Reduction with Partial Hypothesis Re-ranking for Streaming ASR

    公开(公告)号:US20240029718A1

    公开(公告)日:2024-01-25

    申请号:US18352211

    申请日:2023-07-13

    Applicant: Google LLC

    CPC classification number: G10L15/10 G10L15/26

    Abstract: A method includes processing, using a speech recognizer, a first portion of audio data to generate a first lattice, and generating a first partial transcription for an utterance based on the first lattice. The method includes processing, using the recognizer, a second portion of the data to generate, based on the first lattice, a second lattice representing a plurality of partial speech recognition hypotheses for the utterance and a plurality of corresponding speech recognition scores. For each particular partial speech recognition hypothesis, the method includes generating a corresponding re-ranked score based on the corresponding speech recognition score and whether the particular partial speech recognition hypothesis shares a prefix with the first partial transcription. The method includes generating a second partial transcription for the utterance by selecting the partial speech recognition hypothesis of the second plurality of partial speech recognition hypotheses having the highest corresponding re-ranked score.

    Learning word-level confidence for subword end-to-end automatic speech recognition

    公开(公告)号:US11610586B2

    公开(公告)日:2023-03-21

    申请号:US17182592

    申请日:2021-02-23

    Applicant: Google LLC

    Abstract: A method includes receiving a speech recognition result, and using a confidence estimation module (CEM), for each sub-word unit in a sequence of hypothesized sub-word units for the speech recognition result: obtaining a respective confidence embedding that represents a set of confidence features; generating, using a first attention mechanism, a confidence feature vector; generating, using a second attention mechanism, an acoustic context vector; and generating, as output from an output layer of the CEM, a respective confidence output score for each corresponding sub-word unit based on the confidence feature vector and the acoustic feature vector received as input by the output layer of the CEM. For each of the one or more words formed by the sequence of hypothesized sub-word units, the method also includes determining a respective word-level confidence score for the word. The method also includes determining an utterance-level confidence score by aggregating the word-level confidence scores.

    Multi-Task Learning for End-To-End Automated Speech Recognition Confidence and Deletion Estimation

    公开(公告)号:US20220310080A1

    公开(公告)日:2022-09-29

    申请号:US17643826

    申请日:2021-12-11

    Applicant: Google LLC

    Abstract: A method including receiving a speech recognition result corresponding to a transcription of an utterance spoken by a user. For each sub-word unit in a sequence of hypothesized sub-word units of the speech recognition result, using a confidence estimation module to: obtain a respective confidence embedding associated with the corresponding output step when the corresponding sub-word unit was output from the first speech recognizer; generate a confidence feature vector; generate an acoustic context vector; and generate a respective confidence output score for the corresponding sub-word unit based on the confidence feature vector and the acoustic feature vector received as input by the output layer of the confidence estimation module. The method also includes determining, based on the respective confidence output score generated for each sub-word unit in the sequence of hypothesized sub-word units, an utterance-level confidence score for the transcription of the utterance.

Patent Agency Ranking