-
公开(公告)号:US20220270597A1
公开(公告)日:2022-08-25
申请号:US17182592
申请日:2021-02-23
Applicant: Google LLC
Inventor: David Qiu , Qiujia Li , Yanzhang He , Yu Zhang , Bo Li , Liangliang Cao , Rohit Prabhavalkar , Deepti Bhatia , Wei Li , Ke Hu , Tara Sainath , Ian Mcgraw
Abstract: A method includes receiving a speech recognition result, and using a confidence estimation module (CEM), for each sub-word unit in a sequence of hypothesized sub-word units for the speech recognition result: obtaining a respective confidence embedding that represents a set of confidence features; generating, using a first attention mechanism, a confidence feature vector; generating, using a second attention mechanism, an acoustic context vector; and generating, as output from an output layer of the CEM, a respective confidence output score for each corresponding sub-word unit based on the confidence feature vector and the acoustic feature vector received as input by the output layer of the CEM. For each of the one or more words formed by the sequence of hypothesized sub-word units, the method also includes determining a respective word-level confidence score for the word. The method also includes determining an utterance-level confidence score by aggregating the word-level confidence scores.
-
2.
公开(公告)号:US20250078830A1
公开(公告)日:2025-03-06
申请号:US18826743
申请日:2024-09-06
Applicant: Google LLC
Inventor: Junwen Bai , Bo Li , Qiujia Li , Tara N. Sainath , Trevor Strohman
IPC: G10L15/197 , G10L15/00 , G10L15/02 , G10L15/06 , G10L15/30
Abstract: A method includes receiving a sequence of acoustic frames characterizing a spoken utterance in a particular native language. The method also includes generating a first higher order feature representation for a corresponding acoustic frame in the sequence of acoustic frames by a causal encoder that includes an initial stack of multi-head attention layers. The method also includes generating a second higher order feature representation for a corresponding first higher order feature representation by a non-causal encoder that includes a final stack of multi-head attention layers. The method also includes receiving, as input at each corresponding language-dependent adapter (LDA) module, a language ID vector identifying the particular native language to activate corresponding language-dependent weights specific to the particular native language. The method also includes generating a first probability distribution over possible speech recognition hypotheses by a decoder.
-
公开(公告)号:US11610586B2
公开(公告)日:2023-03-21
申请号:US17182592
申请日:2021-02-23
Applicant: Google LLC
Inventor: David Qiu , Qiujia Li , Yanzhang He , Yu Zhang , Bo Li , Liangliang Cao , Rohit Prabhavalkar , Deepti Bhatia , Wei Li , Ke Hu , Tara Sainath , Ian Mcgraw
Abstract: A method includes receiving a speech recognition result, and using a confidence estimation module (CEM), for each sub-word unit in a sequence of hypothesized sub-word units for the speech recognition result: obtaining a respective confidence embedding that represents a set of confidence features; generating, using a first attention mechanism, a confidence feature vector; generating, using a second attention mechanism, an acoustic context vector; and generating, as output from an output layer of the CEM, a respective confidence output score for each corresponding sub-word unit based on the confidence feature vector and the acoustic feature vector received as input by the output layer of the CEM. For each of the one or more words formed by the sequence of hypothesized sub-word units, the method also includes determining a respective word-level confidence score for the word. The method also includes determining an utterance-level confidence score by aggregating the word-level confidence scores.
-
4.
公开(公告)号:US20220310080A1
公开(公告)日:2022-09-29
申请号:US17643826
申请日:2021-12-11
Applicant: Google LLC
Inventor: David Qiu , Yanzhang He , Yu Zhang , Qiujia Li , Liangliang Cao , Ian McGraw
IPC: G10L15/197 , G10L15/06 , G10L15/22 , G10L15/02 , G10L15/16 , G10L15/30 , G10L15/32 , G10L15/04 , G06N3/08
Abstract: A method including receiving a speech recognition result corresponding to a transcription of an utterance spoken by a user. For each sub-word unit in a sequence of hypothesized sub-word units of the speech recognition result, using a confidence estimation module to: obtain a respective confidence embedding associated with the corresponding output step when the corresponding sub-word unit was output from the first speech recognizer; generate a confidence feature vector; generate an acoustic context vector; and generate a respective confidence output score for the corresponding sub-word unit based on the confidence feature vector and the acoustic feature vector received as input by the output layer of the confidence estimation module. The method also includes determining, based on the respective confidence output score generated for each sub-word unit in the sequence of hypothesized sub-word units, an utterance-level confidence score for the transcription of the utterance.
-
-
-