Scale-Permuted Machine Learning Architecture

    公开(公告)号:US20240378509A1

    公开(公告)日:2024-11-14

    申请号:US18784068

    申请日:2024-07-25

    Applicant: Google LLC

    Abstract: A computer-implemented method of generating scale-permuted models can generate models having improved accuracy and reduced evaluation computational requirements. The method can include defining, by a computing system including one or more computing devices, a search space including a plurality of candidate permutations of a plurality of candidate feature blocks, each of the plurality of candidate feature blocks having a respective scale. The method can include performing, by the computing system, a plurality of search iterations by a search algorithm to select a scale-permuted model from the search space, the scale-permuted model based at least in part on a candidate permutation of the plurality of candidate permutations.

    Scale-permuted machine learning architecture

    公开(公告)号:US12079695B2

    公开(公告)日:2024-09-03

    申请号:US17061355

    申请日:2020-10-01

    Applicant: Google LLC

    CPC classification number: G06N20/00 G06F11/3495 G06N3/04

    Abstract: A computer-implemented method of generating scale-permuted models can generate models having improved accuracy and reduced evaluation computational requirements. The method can include defining, by a computing system including one or more computing devices, a search space including a plurality of candidate permutations of a plurality of candidate feature blocks, each of the plurality of candidate feature blocks having a respective scale. The method can include performing, by the computing system, a plurality of search iterations by a search algorithm to select a scale-permuted model from the search space, the scale-permuted model based at least in part on a candidate permutation of the plurality of candidate permutations.

    Compression-Informed Video Super-Resolution
    4.
    发明公开

    公开(公告)号:US20240022760A1

    公开(公告)日:2024-01-18

    申请号:US18256837

    申请日:2021-08-05

    Applicant: Google LLC

    Abstract: Example aspects of the present disclosure are directed to systems and methods which feature a machine-learned video super-resolution (VSR) model which has been trained using a bi-directional training approach. In particular, the present disclosure provides a compression-informed (e.g., compression-aware) super-resolution model that can perform well on real-world videos with different levels of compression. Specifically, example models described herein can include three modules to robustly restore the missing information caused by video compression. First, a bi-directional recurrent module can be used to reduce the accumulated warping error from the random locations of the intra-frame from compressed video frames. Second, a detail-aware flow estimation module can be added to enable recovery of high resolution (HR) flow from compressed low resolution (LR) frames. Finally, a Laplacian enhancement module can add high-frequency information to the warped HR frames washed out by video encoding.

    Scale-Permuted Machine Learning Architecture

    公开(公告)号:US20220108204A1

    公开(公告)日:2022-04-07

    申请号:US17061355

    申请日:2020-10-01

    Applicant: Google LLC

    Abstract: A computer-implemented method of generating scale-permuted models can generate models having improved accuracy and reduced evaluation computational requirements. The method can include defining, by a computing system including one or more computing devices, a search space including a plurality of candidate permutations of a plurality of candidate feature blocks, each of the plurality of candidate feature blocks having a respective scale. The method can include performing, by the computing system, a plurality of search iterations by a search algorithm to select a scale-permuted model from the search space, the scale-permuted model based at least in part on a candidate permutation of the plurality of candidate permutations.

Patent Agency Ranking