Abstract:
Turbine blade airfoils, film cooling systems thereof, and methods for forming improved film cooled components are provided. The turbine blade airfoil has an external wall surface and comprises leading and trailing edges, pressure and suction sidewalls both extending between the leading and the trailing edges, an internal cavity, one or more isolation trenches in the external wall surface, a plurality of film cooling holes arranged in cooling rows, and a plurality of span-wise surface connectors interconnecting the outlets of the film cooling holes in the same cooling row to form a plurality of rows of interconnected film cooling holes. Each film cooling hole has an inlet connected to the internal cavity and an outlet opening onto the external wall surface. The span-wise surface connectors in at least one selected row of interconnected film cooling holes are disposed in the one or more isolation trenches.
Abstract:
Turbine blade airfoils, film cooling systems thereof, and methods for forming improved film cooled components are provided. The turbine blade airfoil has an external wall surface and comprises leading and trailing edges, pressure and suction sidewalls both extending between the leading and the trailing edges, an internal cavity, one or more isolation trenches in the external wall surface, a plurality of film cooling holes arranged in cooling rows, and a plurality of span-wise surface connectors interconnecting the outlets of the film cooling holes in the same cooling row to form a plurality of rows of interconnected film cooling holes. Each film cooling hole has an inlet connected to the internal cavity and an outlet opening onto the external wall surface. The span-wise surface connectors in at least one selected row of interconnected film cooling holes are disposed in the one or more isolation trenches.
Abstract:
Turbine blade airfoils, showerhead film cooling systems thereof, and methods for cooling the turbine blade airfoils using the same are provided. The airfoil has a leading edge and a trailing edge, a pressure sidewall and a suction sidewall both extending between the leading and the trailing edges, and an internal cavity for supplying cooling air. A showerhead of film cooling holes is connected to the internal cavity. Each film cooling hole has an inlet connected to the internal cavity and an outlet opening onto an external wall surface at the leading edge of the airfoil. A plurality of surface connectors is formed in the external wall surface. Each surface connector of the plurality of surface connectors interconnects the outlets of at least one selected pair of the film cooling holes.
Abstract:
The present disclosure provides various embodiments of cooling circuits, turbine blades with cooling circuits, and methods of forming such turbine blades, having raised rib turbulator structures, which may be used in gas turbine engines. In one exemplary embodiment, a cooling circuit for directing a flow of fluid is disclosed, the cooling circuit includes a cooling circuit wall and a plurality of raised turbulator ribs, each turbulator rib of the plurality of raised turbulator ribs being spaced apart from the cooling circuit wall to allow the fluid to flow between the cooling circuit wall and the plurality of turbulator ribs.
Abstract:
The present disclosure provides various embodiments of cooling circuits, turbine blades with cooling circuits, and methods of forming such turbine blades, having raised rib turbulator structures, which may be used in gas turbine engines. In one exemplary embodiment, a cooling circuit for directing a flow of fluid is disclosed, the cooling circuit includes a cooling circuit wall and a plurality of raised turbulator ribs, each turbulator rib of the plurality of raised turbulator ribs being spaced apart from the cooling circuit wall to allow the fluid to flow between the cooling circuit wall and the plurality of turbulator ribs.
Abstract:
Turbine blade airfoils, showerhead film cooling systems thereof, and methods for cooling the turbine blade airfoils using the same are provided. The airfoil has a leading edge and a trailing edge, a pressure sidewall and a suction sidewall both extending between the leading and the trailing edges, and an internal cavity for supplying cooling air. A showerhead of film cooling holes is connected to the internal cavity. Each film cooling hole has an inlet connected to the internal cavity and an outlet opening onto an external wall surface at the leading edge of the airfoil. A plurality of surface connectors is formed in the external wall surface. Each surface connector of the plurality of surface connectors interconnects the outlets of at least one selected pair of the film cooling holes.