Abstract:
An electric taxi system (ETS) for an aircraft may include a ground speed sensor, a speed selection unit and a speed computer coupled to the ground speed sensor and to the speed selection unit. The speed computer may produce a speed error signal. A motor controller coupled to a wheel motor may control speed of the wheel motor responsively to the speed error signal.
Abstract:
A system and method are provided for highlighting and selecting one of a plurality of graphical IFR procedure depiction on an aircraft display. A displayed legend includes a plurality of textual procedure identifications, one each for each of the graphical IFR procedure depictions. Movement of a cursor over either a graphical IFR procedure depiction or a textual procedure identification highlights both, and selection thereof removes all other graphical IFR procedure depictions and textual procedure identifications from being displayed.
Abstract:
A high-integrity auto-guidance and control method for use in conjunction with an aircraft electric taxi drive system comprises obtaining taxi path data generating in a plurality of processors taxi path guidance and control information from the taxi path guidance data, and sending commands derived from the taxi path guidance and control information from one of the plurality of processors based on a predetermined priority scheme to at least one electric taxi controller.
Abstract:
A system and method are provided for highlighting and selecting one of a plurality of graphical IFR procedure depiction on an aircraft display. A displayed legend includes a plurality of textual procedure identifications, one each for each of the graphical IFR procedure depictions. Movement of a cursor over either a graphical IFR procedure depiction or a textual procedure identification highlights both, and selection thereof removes all other graphical IFR procedure depictions and textual procedure identifications from being displayed.
Abstract:
A lever control system integrates taxi operation using an electric motor in an aircraft with speed control of a jet engine in the same aircraft. The lever control system provides a smooth transition between the electric motor system used for aircraft taxi operation, and a jet engine system used to fly the aircraft. The lever control system may include a reverse lockout mechanism to prevent unintended reverse taxi movement of the aircraft.
Abstract:
An auto-guidance and control method and system are provided for use in conjunction with an aircraft electric taxi system, wherein electric taxi guidance may be performed in a manual mode by a crew or in an auto-mode by an auto-guidance and control system. First, aircraft status data and airport feature data are accessed. A processor, in response to at least the aircraft status data and the airport feature data, generates taxi guidance information and renders the taxi guidance information on a display. A guidance route is manually navigated utilizing guidance information on the display in the manual mode. In the auto mode, taxi-path commands, generated by the processor, are applied to taxi path guidance controllers in the auto-mode.
Abstract:
An electric taxi system (ETS) for an aircraft may include a ground speed sensor, a speed selection unit and a speed computer coupled to the ground speed sensor and to the speed selection unit. The speed computer may produce a speed error signal. A motor controller coupled to a wheel motor may control speed of the wheel motor responsively to the speed error signal.
Abstract:
A pilot interface panel may comprise at least one input mechanism configured to receive at least one user input, generate at least one input signal corresponding to the at least one user input, and send the at least one input signal to a controller. The controller may be configured to control movement of an electric taxi system of an aircraft in a manner according to the at least one input signal, wherein the electric taxi system may be configured to rotate at least one wheel of the aircraft by force from a purely electromotive source. The pilot interface panel may further comprise at least one safety mechanism, which may be configured to prevent at least one of the at least one input mechanisms from receiving an inadvertent user input resulting from an unintended action by the user.
Abstract:
A high-integrity auto-guidance and control method for use in conjunction with an aircraft electric taxi drive system comprises obtaining taxi path data generating in a plurality of processors taxi path guidance and control information from the taxi path guidance data, and sending commands derived from the taxi path guidance and control information from one of the plurality of processors based on a predetermined priority scheme to at least one electric taxi controller.