Abstract:
A method for voltage balancing of series connected capacitors, wherein a voltage in an intermediate circuit of an electric circuit can be easily and safely balanced between a plurality of series connected capacitors and thus these components are operated safely in terms of their voltage strength. This problem is solved in that the voltage balancing is accomplished in that, in a first step of the method, an at least partial discharging of a first or a second capacitor occurs across a first or second winding of a transformer, while thanks to the action of the transformer a current is induced in a second step of the method in the second or first winding which charges the second or first capacitor as a charging current.
Abstract:
Disclosed herein is a power electronic device assembly for preventing parasitic switching-on of a feeder circuit breaker. The assembly includes a logic circuit, a power switch with an input and a reference leg, and a driver circuit which drives the power switch. The driver circuit includes a drive unit and a short circuit having a safety function. When the input of the power switch is not operated, the power switch is short-circuited by the reference leg so that the potential of the input decreases below a switching-on threshold. An additional wire connection device is disposed between the driver circuit and the power switch and configured such that when no or excessively small amount of supply voltage is applied, the input of the power switch is short-circuited or is coupled to a safety potential at which discharge is secured, whereby discharge of parasitic charge current is secured.
Abstract:
A method for voltage balancing of series connected capacitors, wherein a voltage in an intermediate circuit of an electric circuit can be easily and safely balanced between a plurality of series connected capacitors and thus these components are operated safely in terms of their voltage strength. This problem is solved in that the voltage balancing is accomplished in that, in a first step of the method, an at least partial discharging of a first or a second capacitor occurs across a first or second winding of a transformer, while thanks to the action of the transformer a current is induced in a second step of the method in the second or first winding which charges the second or first capacitor as a charging current.
Abstract:
The invention relates to an electric compressor control device comprising a low-voltage domain. The low-voltage domain comprises a first control unit set up to process control commands for the control of the electric compressor, and a first voltage supply set up to supply the first control unit and connected to a low-voltage source. The low-voltage domain comprises furthermore a high-voltage domain. The high-voltage domain comprises a second control unit set up to control a power output stage, wherein the power output state inverts a dc voltage from a high-voltage source into an ac voltage in order to supply a motor of the electric compressor with the ac voltage. The high-voltage domain comprises furthermore a second voltage supply set up to supply the second control unit and connected to the high-voltage source.
Abstract:
The invention relates to an electric compressor control device comprising a low-voltage domain. The low-voltage domain comprises a first control unit set up to process control commands for the control of the electric compressor, and a first voltage supply set up to supply the first control unit and connected to a low-voltage source. The low-voltage domain comprises furthermore a high-voltage domain. The high-voltage domain comprises a second control unit set up to control a power output stage, wherein the power output state inverts a dc voltage from a high-voltage source into an ac voltage in order to supply a motor of the electric compressor with the ac voltage. The high-voltage domain comprises furthermore a second voltage supply set up to supply the second control unit and connected to the high-voltage source.
Abstract:
The invention, which relates to an arrangement (1) for the active suppression of interference signals, addresses the problem of specifying an arrangement (1) for the active suppression of interference signals, with which the reliable and secure compensation of the EMC interferences is achieved, which has a lower installation space requirement, generates less interference emission and is cost-effective of production. This problem is resolved thereby that beneath the main circuit board (12) disposed on the surface of the housing (10) a recess (14) is disposed and that in this recess (14) a circuit board (15) for the active EMC filter (4) is emplaced.
Abstract:
Disclosed herein is a power electronic device assembly for preventing parasitic switching-on of a feeder circuit breaker. The assembly includes a logic circuit, a power switch with an input and a reference leg, and a driver circuit which drives the power switch. The driver circuit includes a drive unit and a short circuit having a safety function. When the input of the power switch is not operated, the power switch is short-circuited by the reference leg so that the potential of the input decreases below a switching-on threshold. An additional wire connection device is disposed between the driver circuit and the power switch and configured such that when no or excessively small amount of supply voltage is applied, the input of the power switch is short-circuited or is coupled to a safety potential at which discharge is secured, whereby discharge of parasitic charge current is secured.