Abstract:
Techniques are described for assessing road traffic conditions in various ways based on obtained traffic-related data, such as data samples from vehicles and other mobile data sources traveling on the roads, as well as in some situations data from one or more other sources (such as physical sensors near to or embedded in the roads). The assessment of road traffic conditions based on obtained data samples may include various filtering and/or conditioning of the data samples, and various inferences and probabilistic determinations of traffic-related characteristics from the data samples. In some situations, the filtering of the data samples includes identifying data samples that are inaccurate or otherwise unrepresentative of actual traffic condition characteristics, such as data samples that are not of interest based at least in part on roads with which the data samples are associated and/or that otherwise reflect vehicle locations or activities that are not of interest.
Abstract:
Techniques are described for assessing road traffic conditions in various ways based on obtained traffic-related data, such as data samples from vehicles and other mobile data sources traveling on the roads and/or from one or more other sources (such as physical sensors near to or embedded in the roads). The road traffic conditions assessment based on obtained data samples may include various filtering and/or conditioning of the data samples, and various inferences and probabilistic determinations of traffic-related characteristics of interest from the data samples. In some situations, the inferences include repeatedly determining current traffic flow characteristics and/or predicted future traffic flow characteristics for road segments of interest during time periods of interest, such as to determine average traffic speed, traffic volume and/or occupancy, and include weighting various data samples in various ways (e.g., based on a latency of the data samples and/or a source of the data samples).
Abstract:
Techniques are described for assessing road traffic conditions in various ways based on obtained traffic-related data, such as data samples from vehicles and other mobile data sources traveling on the roads, as well as in some situations data from one or more other sources (such as physical sensors near to or embedded in the roads). The assessment of road traffic conditions based on obtained data samples may include various filtering and/or conditioning of the data samples, and various inferences and probabilistic determinations of traffic-related characteristics from the data samples. In some situations, the filtering of the data samples includes identifying data samples that are inaccurate or otherwise unrepresentative of actual traffic condition characteristics, such as data samples that are not of interest based at least in part on roads with which the data samples are associated and/or that otherwise reflect vehicle locations or activities that are not of interest.
Abstract:
Techniques are described for assessing road traffic conditions in various ways based on obtained traffic-related data, such as data samples from vehicles and other mobile data sources traveling on the roads and/or from one or more other sources (such as physical sensors near to or embedded in the roads). The road traffic conditions assessment based on obtained data samples may include various filtering and/or conditioning of the data samples, and various inferences and probabilistic determinations of traffic-related characteristics of interest from the data samples. In some situations, the inferences include repeatedly determining current traffic flow characteristics and/or predicted future traffic flow characteristics for road segments of interest during time periods of interest, such as to determine average traffic speed, traffic volume and/or occupancy, and include weighting various data samples in various ways (e.g., based on a latency of the data samples and/or a source of the data samples).
Abstract:
Techniques are described for assessing road traffic conditions in various ways based on obtained traffic-related data, such as data samples from vehicles and other mobile data sources traveling on the roads and/or from one or more other sources (such as physical sensors near to or embedded in the roads). The road traffic conditions assessment based on obtained data samples may include various filtering and/or conditioning of the data samples, and various inferences and probabilistic determinations of traffic-related characteristics of interest from the data samples. In some situations, the inferences include repeatedly determining current traffic flow characteristics and/or predicted future traffic flow characteristics for road segments of interest during time periods of interest, such as to determine average traffic speed, traffic volume and/or occupancy, and include weighting various data samples in various ways (e.g., based on a latency of the data samples and/or a source of the data samples).
Abstract:
Techniques are described for assessing road traffic conditions in various ways based on obtained traffic-related data, such as data samples from vehicles and other mobile data sources traveling on the roads and/or from one or more other sources (such as physical sensors near to or embedded in the roads). The road traffic conditions assessment based on obtained data samples may include various filtering and/or conditioning of the data samples, and various inferences and probabilistic determinations of traffic-related characteristics of interest from the data samples. In some situations, the inferences include repeatedly determining current traffic flow characteristics and/or predicted future traffic flow characteristics for road segments of interest during time periods of interest, such as to determine average traffic speed, traffic volume and/or occupancy, and include weighting various data samples in various ways (e.g., based on a latency of the data samples and/or a source of the data samples).
Abstract:
Techniques are described for assessing road traffic conditions in various ways based on obtained traffic-related data, such as data samples from vehicles and other mobile data sources traveling on the roads and/or from one or more other sources (such as physical sensors near to or embedded in the roads). The road traffic conditions assessment based on obtained data samples may include various filtering and/or conditioning of the data samples, and various inferences and probabilistic determinations of traffic-related characteristics of interest from the data samples. In some situations, the inferences include repeatedly determining current traffic flow characteristics and/or predicted future traffic flow characteristics for road segments of interest during time periods of interest, such as to determine average traffic speed, traffic volume and/or occupancy, and include weighting various data samples in various ways (e.g., based on a latency of the data samples and/or a source of the data samples).
Abstract:
Techniques are described for assessing road traffic conditions in various ways based on obtained traffic-related data, such as data samples from vehicles and other mobile data sources traveling on the roads and/or from one or more other sources (such as physical sensors near to or embedded in the roads). The road traffic conditions assessment based on obtained data samples may include various filtering and/or conditioning of the data samples, and various inferences and probabilistic determinations of traffic-related characteristics of interest from the data samples. In some situations, the inferences include repeatedly determining current traffic flow characteristics and/or predicted future traffic flow characteristics for road segments of interest during time periods of interest, such as to determine average traffic speed, traffic volume and/or occupancy, and include weighting various data samples in various ways (e.g., based on a latency of the data samples and/or a source of the data samples).
Abstract:
Techniques are described for assessing road traffic conditions in various ways based on obtained traffic-related data, such as data samples from vehicles and other mobile data sources traveling on the roads and/or from one or more other sources (such as physical sensors near to or embedded in the roads). The road traffic conditions assessment based on obtained data samples may include various filtering and/or conditioning of the data samples, and various inferences and probabilistic determinations of traffic-related characteristics of interest from the data samples. In some situations, the inferences include repeatedly determining current traffic flow characteristics and/or predicted future traffic flow characteristics for road segments of interest during time periods of interest, such as to determine average traffic speed, traffic volume and/or occupancy, and include weighting various data samples in various ways (e.g., based on a latency of the data samples and/or a source of the data samples).
Abstract:
Techniques are described for assessing road traffic conditions in various ways based on obtained traffic-related data, such as data samples from vehicles and other mobile data sources traveling on the roads and/or from one or more other sources (such as physical sensors near to or embedded in the roads). The road traffic conditions assessment based on obtained data samples may include various filtering and/or conditioning of the data samples, and various inferences and probabilistic determinations of traffic-related characteristics of interest from the data samples. In some situations, the inferences include repeatedly determining current traffic flow characteristics and/or predicted future traffic flow characteristics for road segments of interest during time periods of interest, such as to determine average traffic speed, traffic volume and/or occupancy, and include weighting various data samples in various ways (e.g., based on a latency of the data samples and/or a source of the data samples).