Abstract:
Techniques related to object detection using binary coded images are discussed. Such techniques may include performing object detection based on multiple spatial correlation mappings between a generated binary coded image and a binary coded image based object detection model and nesting look up tables such that binary coded representations are grouped and such groups are associated with confidence values for performing object detection.
Abstract:
A mechanism is described for facilitating recognition, reidentification, and security in machine learning at autonomous machines. A method of embodiments, as described herein, includes facilitating a camera to detect one or more objects within a physical vicinity, the one or more objects including a person, and the physical vicinity including a house, where detecting includes capturing one or more images of one or more portions of a body of the person. The method may further include extracting body features based on the one or more portions of the body, comparing the extracted body features with feature vectors stored at a database, and building a classification model based on the extracted body features over a period of time to facilitate recognition or reidentification of the person independent of facial recognition of the person.
Abstract:
A mechanism is described for facilitating person tracking and data security in machine learning at autonomous machines. A method of embodiments, as described herein, includes detecting, by a camera associated with one or more trackers, a person within a physical vicinity, where detecting includes capturing one or more images the person. The method may further include tracking, by the one or more trackers, the person based on the one or more images of the person, where tracking includes collect tracking data relating to the person. The method may further include selecting a tracker of the one or more trackers as a preferred tracker based on the tracking data.
Abstract:
A mechanism is described for facilitating recognition, reidentification, and security in machine learning at autonomous machines. A method of embodiments, as described herein, includes facilitating a camera to detect one or more objects within a physical vicinity, the one or more objects including a person, and the physical vicinity including a house, where detecting includes capturing one or more images of one or more portions of a body of the person. The method may further include extracting body features based on the one or more portions of the body, comparing the extracted body features with feature vectors stored at a database, and building a classification model based on the extracted body features over a period of time to facilitate recognition or reidentification of the person independent of facial recognition of the person.
Abstract:
A mechanism is described for facilitating person tracking and data security in machine learning at autonomous machines. A method of embodiments, as described herein, includes detecting, by a camera associated with one or more trackers, a person within a physical vicinity, where detecting includes capturing one or more images the person. The method may further include tracking, by the one or more trackers, the person based on the one or more images of the person, where tracking includes collect tracking data relating to the person. The method may further include selecting a tracker of the one or more trackers as a preferred tracker based on the tracking data.