Abstract:
Techniques for operating a kinematic structure by manual motion of a link coupled to the kinematic structure include a system having a kinematic structure configured to support an instrument and a processor. The processor is configured to place the system in a clutching mode; transition the system from the clutching mode to a set-up mode in response to detecting a joint operation of the kinematic structure; while in the set-up mode, determine an input displacement of a link from an initial positional relationship relative to a portion of the kinematic structure to a displaced positional relationship relative to the portion of the kinematic structure; and while in the set-up mode and in response to the determined input displacement, drive the kinematic structure so that the link returns toward the initial positional relationship relative to the portion of the kinematic structure.
Abstract:
Robotic and/or surgical devices, systems, and methods include kinematic linkage structures and associated control systems configured to facilitate preparation of the system for use. A set-up mode employs an intuitive user interface in which one or more joints of the kinematic linkage are initially held static by a brake or joint drive system. The user may articulate the joint(s) by manually pushing against the linkage with a force, torque, or the like that exceeds a manual articulation threshold. Articulation of the moving joints is facilitated by modifying the signals transmitted to the brake or drive system. The system may sense completion of the reconfiguration from a velocity of the joint(s) falling below a threshold, optionally for a desired dwell time. Embodiments of the invention can provide for manual movement of a platform supporting a plurality of surgical manipulators or the like without having to add additional input devices.
Abstract:
Techniques for operating a kinematic structure by manual motion of a link coupled to the kinematic structure include a system comprising a first manipulating means and processing means. The processing means is for detecting whether a first means for accessing an internal worksite is mounted to the first manipulating means; detecting an input indicating the system is to be in a set-up mode; and inhibiting, in response to detecting that the first means is mounted to the first manipulating means, transition of the system to the set-up mode.
Abstract:
User-initiated break-away clutching includes a robotic system having a joint, a brake or drive unit coupled to the joint, and a control system coupled with the brake or drive unit. The control system is configured to determine a first manual effort applied to the joint; inhibit, using the brake or drive unit, manual articulation of the joint in response to the first manual effort being below an articulation threshold; facilitate, using the brake or drive unit, the manual articulation of the joint in response to the first manual effort exceeding the articulation threshold; and inhibit, using the brake or drive unit, further manual articulation of the joint in response to a determination that a speed of the manual articulation of the joint is below a speed threshold.
Abstract:
Techniques for operating a kinematic structure by manual motion of a link coupled to the kinematic structure include a system having a kinematic structure configured to support an instrument and a processor. The processor is configured to place the system in a clutching mode, transition the system from the clutching mode to a set-up mode in response to detecting a joint operation of the kinematic structure, establish a desired reference location of a link relative to a portion of the kinematic structure, detect an error between an actual reference location of the link relative to the portion and the desired reference location of the link, and drive the kinematic structure so as to decrease the error. The link is distal to the portion on the kinematic structure. The error is due to manual movement of the link.