Abstract:
A mobile phone to transmit and receive a radio frequency signal through a first antenna and a second antenna in a radio communication system includes a first radio frequency signal receiving unit to convert the radio frequency signal received through the first antenna into a baseband signal to be transmitted to a controller, a second radio frequency signal receiving unit to convert the radio frequency signal received through the second antenna into a baseband signal to be transmitted to the controller, and a radio frequency signal transmitting unit to convert a baseband signal transmitted from the controller into a radio frequency signal, to distribute the radio frequency signal, and to selectively output the distributed radio frequency signal to the first antenna and the second antenna.
Abstract:
A mobile phone to transmit and receive a radio frequency signal through a first antenna and a second antenna in a radio communication system includes a first radio frequency signal receiving unit to convert the radio frequency signal received through the first antenna into a baseband signal to be transmitted to a controller, a second radio frequency signal receiving unit to convert the radio frequency signal received through the second antenna into a baseband signal to be transmitted to the controller, and a radio frequency signal transmitting unit to convert a baseband signal transmitted from the controller into a radio frequency signal, to distribute the radio frequency signal, and to selectively output the distributed radio frequency signal to the first antenna and the second antenna.
Abstract:
A mobile phone includes a controller; a receipt adjusting unit for controlling receipt of the (RF) radio frequency signal and controlling receipt diversity under control of the controller; a first RF signal receiver for converting the RF signal received through the first antenna into a baseband signal to be transmitted to the controller under control of the receipt adjusting unit; a second RF signal receiver for converting the RF signal received through the second antenna into a baseband signal to be transmitted to the controller under control of the receipt adjusting unit; a transmission diversity adjusting unit for controlling transmission diversity under control of the controller; and an RF signal transmitter for converting the baseband signal transmitted from the controller into an RF signal to be transmitted to the first antenna and transmitting the RF signal to the second antenna under control of the transmission diversity adjusting unit.
Abstract:
A display panel includes a gate driver connected to a gate line, where the gate driver includes a plurality of stages, where each of the stages includes at least one dual gate thin film transistor having a first control terminal and a second control terminal, and where each of the stages receives a clock signal, a first low voltage, a second low voltage, at least one transmission signal of previous stages, at least two transmission signals of subsequent stages and an output control signal from one of the stages to output a gate voltage including a gate-on voltage and a gate-off voltage.
Abstract:
A thin film transistor substrate includes; a substrate, a plurality of gate lines disposed on the substrate, a plurality of data lines disposed substantially perpendicular to the gate lines, wherein the plurality of data liens include a plurality of outermost data lines, a plurality of thin film transistors (“TFTs”) connected to the gate and data lines, a plurality of pixel electrodes connected to the plurality of TFTs, and a plurality of dummy patterns connected to the outermost data lines.