Abstract:
An OLED display panel is provided which can control the problem of shedding even in high definition panels. Metal wiring 5 which conducts with an earth line of a flexible printed substrate 15i provided on a substrate 1. A display area 2 comprised from a plurality of OLED elements is provided at the center of the substrate 1 and four low resistance metal turns 3 are provided along each of four edges of the display area 2 on a surface of insulation films 8, 10 at the periphery of the display area 2. Among these, one low resistance metal film 3 conducts with the metal wiring 5 via a 3a
Abstract:
A method of manufacturing an organic electroluminescent display device includes the steps of: forming transistors on an element substrate; and forming organic electroluminescent light emitting elements on the respective transistors, in which the step of forming the organic electroluminescent light emitting elements includes the steps of: forming anodes in correspondence with pixels; forming a polymer organic layer made of a polymer material by attaching the polymer material onto upper surfaces and end surfaces of the anodes; forming an organic layer having at least a light emitting layer on the polymer organic layer; and forming a cathode on the organic layer.
Abstract:
A display device includes contact holes opened in an insulating film outside of a display area in which pixels are arranged, and having a conductive film exposed in bottom portions, a first metal film formed to cover the contact holes and come in contact with the conductive film of the bottom portions, and a transparent conductive film formed on the first metal film.
Abstract:
An OLED display panel is provided which can control the problem of shedding even in high definition panels. Metal wiring 5 which conducts with an earth line of a flexible printed substrate 15 is provided on a substrate 1. A display area 2 comprised from a plurality of OLED elements is provided at the center of the substrate 1 and four low resistance metal films 3 are provided along each of four edges of the display area 2 on a surface of insulation films 8, 10 at the periphery of the display area 2. Among these, one low resistance metal film 3 conducts with the metal wiring 5 via a contact 3a.
Abstract:
A substrate on which a plurality of pixel electrodes are disposed is prepared. An organic electroluminescent film 22 is formed with the inclusion of a common layer that continuously covers the plural pixel electrodes. A common electrode is formed on the organic electroluminescent film. The common layer is irradiated with an energy ray above areas between the respective adjacent pixel electrodes with the avoidance of irradiation above the plural pixel electrodes. An electric conductivity of the common layer is reduced above the areas between the respective adjacent pixel electrodes, by irradiation of the energy ray. With this configuration, a current leakage can be prevented between the adjacent pixels.
Abstract:
A display device which can be produced at reduced material cost and has a smaller peripheral frame area, and a method for producing the same, are provided. A display device includes a first substrate including a display area, which includes an organic EL light emitting layer; a second substrate located so as to face the first substrate; a dam member located along, and outside with respect to, a part of an outer edge of the display area, the dam member joining the first substrate and the second substrate to each other; and a filler filling a space between the first substrate and the second substrate while being in contact with the dam member.
Abstract:
A method of manufacturing an organic electroluminescent display device includes the steps of: forming transistors on an element substrate; and forming organic electroluminescent light emitting elements on the respective transistors, in which the step of forming the organic electroluminescent light emitting elements includes the steps of: forming anodes in correspondence with pixels; forming a polymer organic layer made of a polymer material by attaching the polymer material onto upper surfaces and end surfaces of the anodes; forming an organic layer having at least a light emitting layer on the polymer organic layer; and forming a cathode on the organic layer.
Abstract:
The purpose is providing a vapor deposition mask with high rigidity which can evaporate a uniform thickness film. A vapor deposition mask including a mask body having a main opening, a side surface of the main opening, an upper surface intersecting the side surface, and a lower surface opposing the upper surface, a first insulator contacting the lower surface, and a second insulator contacting the upper and side surfaces, wherein the first insulator includes a first region inside the main opening, and a first opening in the first region, the second insulator includes a second region inside the main opening, and a second opening in the second region, the mask body is sandwiched between the first and second insulators, and one of the first and second insulators includes a region located inside the main opening more centrally than the other and not overlapping with the other and the mask body.
Abstract:
A display device with a touch panel includes the touch panel having a first substrate having a detection area to detect a coordinate and an outside area in which at least one external terminal is formed, a plurality of first lines to detect the coordinate in the detection area, a plurality of second lines to detect the coordinate in the detection area, wherein each of the plurality of first lines traverse each of the plurality of second lines. An organic emitting display panel is arranged under the touch panel, and a circular polarizing plate arranged at a side of the touch panel opposite to the organic emitting display panel. The organic emitting display panel, the touch panel, and the circular polarizing plate are arranged in this order.
Abstract:
A method of manufacturing an organic electroluminescent display device of the invention includes the steps of: forming, on a mother substrate including display regions and terminal forming regions, an upper electrode in each of the display regions; and cutting the mother substrate along each border between the display regions to thereby divide the mother substrate into a plurality of individual pieces. The step of forming the upper electrode includes the step of depositing a material of the upper electrode in the display regions using a mask including a frame-shaped frame and stripe-shaped shielding portions that cover regions corresponding to the terminal forming regions. The shielding portion is fixed in a state where the shielding portion spans between facing sides of the frame and tension in one direction is applied, and extends only in the one direction inside an inner periphery of the frame in a plan view.