摘要:
In one embodiment, each security protocol supplicant in a computer network determines its group temporal key (GTK) state, and exchanges the GTK state with one or more neighbor supplicants in the computer network. Based on the exchange, a supplicant may determine whether any inconsistencies exist in its GTK state, and in response to any inconsistencies in the GTK state, may perform a GTK state synchronization with a security protocol authenticator by indicating to the authenticator what is needed to resolve the inconsistent GTK state at the particular supplicant. In another embodiment, the authenticator, which is configured to not store per-supplicant GTK state, may transmit beacons containing GTK identifiers (IDs) of GTKs currently enabled on the authenticator, and also responds to supplicants having inconsistent GTK states with one or more needed GTKs as indicated by the supplicants.
摘要:
In one embodiment, each security protocol supplicant in a computer network determines its group temporal key (GTK) state, and exchanges the GTK state with one or more neighbor supplicants in the computer network. Based on the exchange, a supplicant may determine whether any inconsistencies exist in its GTK state, and in response to any inconsistencies in the GTK state, may perform a GTK state synchronization with a security protocol authenticator by indicating to the authenticator what is needed to resolve the inconsistent GTK state at the particular supplicant. In another embodiment, the authenticator, which is configured to not store per-supplicant GTK state, may transmit beacons containing GTK identifiers (IDs) of GTKs currently enabled on the authenticator, and also responds to supplicants having inconsistent GTK states with one or more needed GTKs as indicated by the supplicants.
摘要:
In one embodiment, an authenticator in a communication network maintains a persistent authenticator epoch value that increments each time the authenticator restarts. The authenticator also maintains a persistent per-supplicant value for each supplicant of the authenticator, each per-supplicant value set to a current value of the authenticator epoch value each time the corresponding supplicant establishes a new security association with the authenticator. To communicate messages from the authenticator to a particular supplicant, each message uses a per-supplicant replay counter having a security association epoch counter and a message counter specific to the particular supplicant. In particular, the security association epoch counter for each message is set as a difference between the authenticator epoch value and the per-supplicant value for the particular supplicant when the message is communicated, while the message counter is incremented for each message communicated.
摘要:
In one embodiment, an authenticator in a communication network maintains a persistent authenticator epoch value that increments each time the authenticator restarts. The authenticator also maintains a persistent per-supplicant value for each supplicant of the authenticator, each per-supplicant value set to a current value of the authenticator epoch value each time the corresponding supplicant establishes a new security association with the authenticator. To communicate messages from the authenticator to a particular supplicant, each message uses a per-supplicant replay counter having a security association epoch counter and a message counter specific to the particular supplicant. In particular, the security association epoch counter for each message is set as a difference between the authenticator epoch value and the per-supplicant value for the particular supplicant when the message is communicated, while the message counter is incremented for each message communicated.
摘要:
In one embodiment, a Transit Information Bloom Filter (TIBF) signal component is generated for use with a routing protocol control message, the TIBF signal component identifying at least one parent node for a corresponding routing topology. The TIBF signal component is encoded in a generated Bloom filter. The parameters of the generated Bloom filter are based at least on one parent node to be encoded and a desired false positive rate for the Bloom filter. The address for each parent node is also encoded in the Bloom filter.
摘要:
In one embodiment, a device in a frequency hopping communication network transmits responsive beacon messages based on adaptive types of responsive beacon message transmission based on a number of received beacon requests within a given time period: the number below a threshold results in synchronized unicast messages; the number above the threshold results in unsynchronized broadcast messages. In another embodiment, the device suppresses unsolicited beacon message transmission based on a density-aware redundancy count of other unsolicited beacon message transmissions from neighboring devices. In another embodiment, the device may transmit unsolicited beacon messages according to an adaptive interval based on stability of the network. In another embodiment, the device may suppress transmission of a beacon request to join the communication network based on a density-aware redundancy count of other beacon requests from neighboring devices, and transmits beacon requests at an adaptive interval that increases in response to each unanswered beacon request.
摘要:
In one embodiment, a device in a frequency hopping communication network operate in a first mode according to a common broadcast schedule for the network that simultaneously overlays a first configured portion of all independently determined unicast listening schedules in the network. In response to determining a power outage condition, the device switches to operation in a power outage mode where the common broadcast schedule for the network in the power outage mode simultaneously overlays a second configured portion of all independently determined unicast listening schedules in the network, the second configured portion greater than the first configured portion. In one embodiment, the device broadcasts one or more power outage notifications (PONs) in response to determining the power outage condition as a reduction of a main power supply at the device. In another embodiment, the device receives a PON while powered as the power outage condition.
摘要:
In one embodiment, a device connected to a network receives at a network interface a first network size indicator for a first network and a second network size indicator for a second network. A difference between the first network size indicator and the second network size indicator is determined and a switching probability is calculated if the difference between the network size indicators is greater than a predetermined network size difference threshold. The device may then migrate from the first network to the second network based on the switching probability.
摘要:
In one embodiment, each of a plurality of devices in a computer network is configured to i) transmit a unicasted dynamic host configuration protocol (DHCP) solicit message to a neighbor device having a route to a border router as an assumed DHCP relay without regard to location of a DHCP server, and ii) operate as a DHCP relay to receive unicasted DHCP solicit messages and relay the solicit message to the border router of the network without regard to location of the DHCP server, and to relay a DHCP reply to a corresponding requestor device.
摘要:
In one embodiment, a rendezvous request message is generated (e.g., by a sender) that specifies a channel C and a rendezvous time T for which a distributed message is to be transmitted in a frequency-hopping computer network. The rendezvous request message is then transmitted on one or more channels used in the computer network based on reaching a plurality of intended recipients of the distributed message with the rendezvous request message prior to rendezvous time T. Accordingly, the distributed message is then transmitted on channel C at rendezvous time T. In another embodiment, a device receives a rendezvous request message, and in response to determining to honor the rendezvous request message, listens for the distributed message on channel C at rendezvous time T.